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Education
2019 – present ] PhD Earth and Space Science, York University, Toronto, Canada

Intelligent decision-making, planning and control
Thesis title: Adaptive Decision-Making for Autonomous Driving Considering Interaction
and Uncertainty of Surrounding Vehicles. Resulted in 5 publications

2016 – 2019 ] MSc Control Engineering, Tianjin University of Technology, Tianjin, China
Nonlinear Dynamics and Chaos-Based Cryptography
Thesis title: Modeling and Analysis of Complex Chaotic System and Design of Pseudo-
random Number Generator using FPGA. Resulted in 4 published papers. Nominated
by the Degree Committee of the People’s Government of Tianjin for theOutstanding
Master’s Thesis Award in Engineering; National Scholarship.

2013 – 2014 ] International Exchange Student Program, Electrical Engineering, Lovely Pro-
fessional University, Phagwara, India
Student exchange program funded byBeĳingMunicipal Government Scholarship:
20,000 RMB.

2011 – 2015 ] BSc Electrical Engineering, Beĳing Union University, Beĳing, China
Graduation project title: Electrical System Design for A Campus Living Area.
Full Mark in graduation project.

Employment History
Academia:
2019 – Present ] Research and Teaching York University, Canada

1) Researcher on intelligent decision-making, planning and control for multi-robot.
2) Serving as Lab instructors for many courses including Introduction to Control Sys-
tems (undergraduate & graduate levels), Feedback Control Systems (undergraduate &
graduate levels), EngineeringMechanics (undergraduate), and Physics (undergraduate).

Industry:
2021 – Present ] R&D Cooperation. Quanser Company, Canada

1) This is a Mitacs project with joint collaboration betweenQuanser company, R&D
department, and York University.
2) Self-driving car plateform development (including sensors, actuators, controllers,
and traffic scenarios) (ROS1& ROS2)
3) Virtual labs: Developing virtual mechatronics systems (rotary servo, self-driving
cars) that behave in the same way as the physical hardware and can be measured and
controlled using MATLAB/Simulink and Python.

Ongoing Projects
2020 – Present ] Effective Human-Machine Cooperation with Intelligent Adaptive Au-

tonomous Systems (IDEaS project).
Department of National Defence (DND) and York University, Canada
The main objectives are:
1) Trust Model Development& Experimentation (Demo)
2) Intelligent Adaptive Automation Aid (Search and Rescue)

https://mingfengyuan.weebly.com/
+1(437)9865257
https://www.youtube.com/@mingfengyuan2882
https://scholar.google.com/citations?hl=en&user=xizigQMAAAAJ&view_op=list_works&sortby=pubdate
4700, Keele Street, Toronto, ON, Canada, M3J 1P3
https://www.youtube.com/watch?v=q6vKrjqHD54


Ongoing Projects (continued)
2022 – Present ] Miniature Imaging Fabry-Perot Spectrometer - Canadian Payloads

Canadian Space Agency (CSA), York University, and MPB Communications.
The main objective is to obtain high-resolution measurements of molecular oxygen
using a miniature imaging Fabry-Perot spectrometer (Link).

2019 – Present ] Decision Making for Autonomous Vehicles in Dynamic and Interactive Envi-
ronments Using Learning-Based Method
NSERC Alliance Program, Mitacs Accelerate Program, and York University.
The main objectives are:
1) Making deep reinforcement learning more efficient, both computationally and sta-
tistically, in a principled manner to enable its applications in critical domains;
2) Scaling deep reinforcement learning to design and optimize societal-scale multi-
agent systems, especially those involving cooperation and/or competition among hu-
mans and/or robots (Demo1, Demo2).

Competitions
] UnmannedAerial Vehicle (UAV) Competition at ICUAS 2023, Poland,Warsaw. (out

of 39 teams worldwide, 3rd place, the only finalist Canadian team)
Objectives: The ICUAS 2023 competition is centered around an UAV challenge to detect
cracks in an unknown environment (both ROS simulation and hardware implementation).
Benchmark 1: unknown 3D environment exploration; (Demo1, Demo2)
Benchmark 2: crack detection;
Benchmark 3: UAV pose estimation;

] "Freescale" Cup National Smart Car 2013, 2nd place, Beĳing Union University
The main purpose of this competition is to build a self-balancing car using a microcon-
troller and essential sensors to keep twowheels upright and achieve vision-based tracking.
The car is primarily divided into sixmainmodules: control module, sensormodule, power
supply module, motor driver module, and debugging module. The core control unit of the
car is Kinetis K60. The main sensors used include gyroscopes, accelerometers, rotary en-
coders, linear CCD, etc;

Supervision and Mentoring
2023 – Present ] MSc Student

Transferring Multi-Agent Reinforcement Learning Policies for Autonomous
Driving using Sim-to-Real
1) Guide the MSc student throughout his research.
2) Increase his self-confidence and allow him to follow his passion.
3) Provide support and advice to validate his work experimentally.

2020 – 2023 ] USRA Program Students
S1: Game-Theoretic Decision-Making for Autonomous Vehicles, UofT
S2: Deep Reinforcement Learning Based Decision-Making: Sim-to-Real Study,
Western University
1) Explain and provide proper resources to the undergraduate students, so they can
understand the underlying principles of their projects.
2) Help them implement their algorithms experimentally (hardware validation).
3) Provide advice on how to present their works at the Lassonde Undergraduate Re-
search Award (LURA/USRA) Conference at the end of the internship.

Honours and Awards
2019 – Present ] York University Graduate Fellowship

York University - $25, 000

https://www.asc-csa.gc.ca/eng/sciences/balloons/campaign-2023.asp
https://www.youtube.com/watch?v=mPtoojXh2-s
https://www.youtube.com/watch?v=Svp2S1OaSB8&t=2s
https://www.youtube.com/watch?v=gPZMUttvbT4
https://www.youtube.com/watch?v=HzMMuYkpcf8


Honours and Awards (continued)
2023 ] Best Demo Award

IEEE International Symposium on Personal, Indoor&Mobile Radio Communications
] Academic Excellence Fund

York University - $1701
] Research Evaluation Conference, PhD category, 1st Prize

York University - $750
2022 ] The 9th China International College Students’ "Internet+" Innovation and En-

trepreneurship Competition
China - $1, 500

2020 – 2021 ] Mitacs Award (work with Quanser company), Canada
Mitacs - $10, 000

2019 ] Carswell Scholarship, York University, Canada
York University - $10, 000

Professional Service and Memberships
] IEEE Transactions on Industrial Electronics, Reviewer
] IEEE Transactions on Intelligent Transportation Systems, Reviewer
] Applied Mathematical Modelling, Reviewer
] Nonlinear Dynamics, Reviewer
] IEEE Robotics and Automation Letters, Reviewer
] IEEE International Conference on Robotics and Automation (ICRA), Reviewer
] IEEE Robotics and Automation Society (IEEE RAS), Student member.
] IEEE Industrial Electronics Society (IEEE IES), Student member

Research Publications
Journal Articles:
1 Yuan,M., & Shan, J. (2023a). Scalable Game-Theoretic Decision-Making for Self-Driving Cars at

Unsignalized Intersections. IEEE Transactions on Industrial Electronics.
� doi:10.1109/TIE.2023.3290255

2 Yuan,M., & Shan, J. (2023b). From Naturalistic Traffic Data to Learning-based Driving Policy: A
Sim-to-Real Study. IEEE Transactions on Vehicular Technology. � doi:10.1109/TVT.2023.3307409

3 Yuan,M., & Shan, J. (2021). Deep Reinforcement Learning Based Game-Theoretic Decision-Making for
Autonomous Vehicles. IEEE Robotics and Automation Letters, 7(2), 818–825.
� doi:10.1109/LRA.2021.3134249

4 Jiao, X., Zhao, Y., Wang, X., Yuan,M., Tao, J., Sun, H., . . . Chen, Z. (2024). Learning-Based Acoustic
Displacement Field Modeling and Micro-Particle Control. Expert Systems with Applications, 237, 121503.

5 Li, Y., Yuan,M., & Chen, Z. (2023). Constructing 3D Conservative Chaotic System with Dissipative
Term Based on Shilnikov Theorem. Chaos, Solitons & Fractals, 171, 113463.

6 Li, Y., Yuan,M., Chen, Z., & Chen, Z. (2023). Coexistence and Ergodicity in A Variant Nosé-Hoover
Oscillator and Its FPGA Implementation. Nonlinear Dynamics, 111(11), 10583–10599.

7 Jiao, X., Yuan,M., Tao, J., Sun, H., Sun, Q., & Chen, Z. (2023). Memristor Hyperchaos in A Generalized
Kolmogorov-Type System with Extreme Multistability. Chinese Physics B, 32(1), 010507.

8 Li, Y., Yuan,M., & Chen, Z. (2022). Multi-Parameter Analysis of Transition from Conservative to
Dissipative Behaviors for A Reversible Dynamic System. Chaos, Solitons & Fractals, 159, 112114.

9 Li, Y., Chen, Z., & Yuan,M. (2022). The Transition from Conservative to Dissipative Flows in Class-B
Laser Model with Fold-Hopf Bifurcation and Coexisting Attractors. Chinese Physics B, 31(6), 060503.

https://doi.org/10.1109/TIE.2023.3290255
https://doi.org/10.1109/TVT.2023.3307409
https://doi.org/10.1109/LRA.2021.3134249


10 Dong, E., & Yuan,M. (2019a). Topological Horseshoe Analysis and FPGA Implementation of A classical
Fractional Order Chaotic System. IEEE Access, 7, 129095–129103. (Corresponding author).

11 Dong, E., Zhang, Z., & Yuan,M. (2019). Ultimate Boundary Estimation and Topological Horseshoe
Analysis on A Parallel 4D Hyperchaotic System with Any Number of Attractors and Its Multi-scroll.
Nonlinear Dynamics, 95, 3219–3236.

12 Dong, E., & Yuan,M. (2018). Topological horseshoe analysis, Ultimate Boundary Estimations of A New
4D Hyperchaotic System and Its FPGA Implementation. International Journal of Bifurcation and Chaos,
28(07), 1850081. (Corresponding author).

13 Dong, E., & Yuan,M. (2019b). A New Class of Hamiltonian Conservative Chaotic Systems with Multi-
Stability and Design of Pseudo-Random Number Generator. Applied Mathematical Modelling, 73, 40–71.
(Corresponding author).

Conferences:

1 Yuan,M., & Shan, J. (2023d). Learning Adaptive Cruise Control for Autonomous Vehicles Using
End-to-End Deep Reinforcement Learning, Singapore: The 49th Annual Conference of the IEEE
Industrial Electronics Society.

Book (chapter):

1 Yuan,M., & Shan, J. (2023c). Game-theoretic Decision-making for Autonomous Driving Vehicles. In
Autonomous vehicles and systems-a technological and societal perspective (pp. 269–301). River Publishers.

Under review:

1 Yuan,M., & Shan, J. (2023e). Enhancing Deep Reinforcement Learning via MPC Guidance for Autonomous
Driving. ( Journal).

2 Kio, O. G., Yuan,M., Shan, J., & Allison, R. S. (2023). Performance-Based Data-Driven Assessment of Trust.

Selected Teaching
2019-2023 ] Instructor, LE/ENG4550 and LE/ENG5550 - Introduction to Control Systems (Fall,

undergraduate& graduate levels)
Department of Earth& Space Science, York University (Link)

2020-2023 ] Instructor, LE/ENG4650 andGS/ESS5650 - FeedbackControl Systems (Winter, un-
dergraduate& graduate levels)
Department of Earth& Space Science, York University

2020-2021 ] Instructor, SC/PHYS1800 B - Engineering Mechanics (undergraduate level)
Department of Physics and Astronomy, York University

2021-2022 ] Instructor, SC/PHYS 1421 - Physics with Life Science Applications (undergraduate)
Department of Physics and Astronomy, York University

Selected Press
2023 ] Miniature Imaging Fabry-Perot Spectrometer, Canadian Space Agency, Canada

Scientific Instruments Developed at Lassonde Fly High above the Clouds During Strato-Science
2023 Campaign [link1][link2]

] 2023 International Conference of Unmanned Aircraft Systems (ICUAS) Unmanned
Aerial Vehicle (UAV) Competition, Warsaw, Poland
Lassonde Students Achieve High-Flying Success at International UAV Competition [link]

2019 ] Carswell Scholars, York University, Canada
Five Lassonde School of Engineering students Named Carswell Scholars [link]

https://mingfengyuan.weebly.com/selected-teaching.html
https://lassonde.yorku.ca/scientific-instrument-developed-at-lassonde-fly-high-above-the-clouds-during-strato-science-2023-campaign
https://www.asc-csa.gc.ca/eng/sciences/balloons/campaign-2023.asp
https://lassonde.yorku.ca/lassonde-graduate-students-achieve-high-flying-success-at-international-uav-competition
https://lassonde.yorku.ca/five-lassonde-school-engineering-students-named-carswell-scholars


Research Plan
PWO

I am passionate about working on different robots including aerial robots (e.g., drones), ground robots (e.g., self-driving
cars), and industrial robots (e.g., robotic arms). Each type of robots has its own challenges; however, there are common
challenges that are blocking the way of having highly intelligent robots in our daily life. Safety, security, privacy, and public
trust are among the challenges that require more work in terms of regulations and public awareness. On the other hand,
robustness against disturbances and uncertainties, cooperative tasks, and collisions avoidance between objects, different
robots, and/or humans in the environment are technical challenges.

My research vision is to conduct excellent and beneficial research in the field of “Intelligent Decision-Making,
Planning and Control”. This vision includes dealing with different types of robots such as self-driving cars, unmanned
aerial vehicles (UAVs), unmanned ground vehicles (UGVs), and industrial robotic arms. To this end, and building on my
research expertise, following research directions represent the core of my research plan:

1. Human behaviour modelling, estimation, and prediction using AI methods:

(a) Human-in-the-loop learning and learning from human feedback;

(b) Behavior/intention prediction for heterogeneous traffic participants;

(c) Reinforcement learning, imitation learning, and inverse reinforcement learning.

2. Learning for Safe and Robust Control:

(a) Decision-making under uncertainty;

(b) Model predictive control combined with learning techniques

(c) Safe exploration for model learning and control

3. Digital Twin in Verification and Validation of Autonomous Technologies:

(a) Simulation verification and validation of autonomous technologies;

(b) Standardization of data and interfaces for validation;

(c) Sim-to-Real Transfer

4. Autonomous Industrial Inspection Robot:

(a) Autonomous navigation in unknown environments

(b) Multi-sensor-based fault detection

(c) Obstacle avoidance considering multiple fast-moving obstacles

Although above research directions are based on my expertise, they are not just extrapolation of my
previous work. They are meant to be broader extensions of significant contribution to the robotics field.

1 Human behaviour modelling, estimation, and prediction using AI
Taking autonomous driving vehicles (ADVs) as an example, modeling human-like driving behaviors is of great significant

to improve driving safety since ADVs can exhibite human-like behaviors in order to be predictable for other human road
users. A significant challenge in autonomous driving is ensuring safe and cooperative interaction with human traffic
participants. A crucial aspect of this challenge is accurately predicting the intentions and trajectories of other road
users and using these predictions to make informed decisions. This prediction task is exceptionally demanding due to
factors like dynamics, road conditions, and the behavior of surrounding agents, often displaying various possible outcomes.
Additionally, leveraging these prediction models for real-time and interaction-aware decision-making is equally challenging,
ensuring safety, minimizing energy consumption, compliance with traffic rules, cooperation with diverse
road users, and passenger satisfaction. AI methods offer promising solutions to address these challenges, enhancing
system performance, scalability, and intelligence, enabling autonomous vehicles to navigate complex driving environments.

1.1 Related Work

PWO
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Fig. 1: RL Learning from Experts

A considerable part of my PhD was dedicated to investigate
learning-based human-like driving policy, especially deep reinforce-
ment learning (RL), imitation learning (IL), and game theory. I have
proposed an efficient training scheme called Deep Recurrent Q-learning from
Demonstration algorithm (DRQfD) [1] for lane-changing decision-making to
address the low sample efficiency in RL and the poor generalization capability
in IL. LSTM is used to predict future states of surrounding vehicles, helping
to address the Partially Observable Markov Decision Process problem in au-
tonomous driving. The experimental results show that our proposed method
outperforms IL in terms of safety, travel efficiency, and human likeness. In
addition, I also proposed a novel approach for implementing game-theoretic
decision-making in combination with deep reinforcement learning to allow
vehicles to make decisions at an unsignalized intersection, achieving an End-
to-end self-play training [2]. The game-theoretic model allows anticipating reactions of additional vehicles to the movements
of the ego-vehicle without using any specific coordination or vehicle-to-vehicle communication. The overall decision-making
framework proposed in this work exhibits great potential to enhance the practical application of RL-driven human-like
autonomous driving (AD).

1.2 Future Directions
• Extend my work and utilize human driving data to learn expert policies and guide the training of RL agents;

• Address the partially observable markov decision process problem in autonomous driving;

• Improve expression ability of reward function in RL for training complex human driving behaviors;

2 Learning for safe and robust control
Safety-critical tasks are prevalent in practical robotic applications, especially when robots operate near humans with

limited environment knowledge. This includes scenarios like robots working alongside humans in manufacturing, au-
tonomous cars in urban settings, or quadrupeds in worksites. Consequently, it’s crucial to develop controllers that
can adapt to dynamic environments while ensuring theoretical safety guarantees for real-world robotic applications.

2.1 Related Work

Fig. 2: Sim-to-Real Transfer (ROS-Gazebo)

Regarding the safe and robust control, I proposed a
novel scalable robust adaptive decision-making frame-
work based on game-theory, model predictive con-
trol, and interaction graph for resolving driving conflicts at
unsignalized intersections [3]. The work considered robustness
against uncertainties such as simplified kinematic models
and unknown driving preferences of surroundings. In the
payoff function design of decision-making, multiple driving fea-
tures are considered including driving safety, fuel consumption,
travel efficiency, and driving aggressiveness. To reduce the computational complexity of game theory, the concept of
switching directed graphs is incorporated into the decision-making framework. Finally, the algorithm is verified on
both hardware and a high-fidelity simulator with multiple vehicles. According to the testing results, it can be con-
ducted that the proposed algorithm makes robust adaptive decisions for ADVs, meanwhile, the performance
of the algorithm in terms of interpretability, computational efficiency, and scalability can be guaranteed.

2.2 Future Directions
• Design and implement controllers that combine RL and MPC in order to exploit the advantages of both, and

therefore, obtain a controller that is optimal and safe;

PWO
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• Extend my work and design robust controllers for UAVs (and different robots such as UGVs and industrial robots)
considering uncertainties;

• Propose algorithms to achieve safe exploration for model learning and control;

3 Autonomous Industrial Inspection Robot:
Autonomous industrial inspection robot is a cutting-edge technological solution designed for the automation and op-

timization of inspection tasks within industrial settings. These robots are equipped with advanced sensors, computer
vision, and artificial intelligence capabilities, allowing them to navigate autonomously, detect defects, gather data, and
perform a wide range of inspection tasks with a high degree of accuracy and efficiency. They are a transformative addition
to various industries, such as manufacturing, quality control, and infrastructure maintenance, as they not only
improve productivity but also enhance safety by minimizing human involvement in hazardous or repetitive
inspection processes.

3.1 Related Work

Fig. 3: UAV Competation

In 2023, our team, SDCNLAB, achieved the 3rd place out of 39 teams
worldwide in ICUAS 2023 Unmanned Aerial Vehicle (UAV) Competi-
tion, which is based on challenges faced by UAVs performing infrastruc-
ture inspection in an 3D unknown environment [4]. From this scenario three
benchmarks arise that will test the perception capabilities, speed and intelligence
of UAVs. To perform a successful inspection, an UAV needs to navigate through a
dense 3D environment, estimating its pose and avoiding obstacles by using onboard
sensors, including RGB-D camera and IMUs. Upon reaching points of interest, the
UAV needs to scan the area and detect any defects in the infrastructure. However,
the planner implemented for this UAV competition is designed for static environ-
ments and can tackle slowly moving obstacles (below 0.5 m/s ) without any modification. A efficient planner for dynamic
environment navigation is also needed.

3.2 Future Directions
• Building on the obtained results of depth sensors and overcome associated practical problems such as making the

machine learning model light enough to be deployed using CPUs instead of GPUs.

• Extending the results of avoidance maneuvers to consider cases with multiple fast-moving obstacles (UAVs).

4 Digital twin in verification and validation of autonomous technologies
Autonomous technologies are rapidly evolving in the last years, fueled by progress in key enabling technologies, such

as accurate positioning, advanced environment perception, vehicular communications, and cybersecurity. However, the
automotive industry faces a major challenge in ensuring the safety and reliability of the developed functions. The automotive
industry is governed by strict test and validation rules, which require a thorough evaluation of all possible situations that an
automated function will face in the real world. Testing all possible scenarios is unfeasible and unaffordable. Consequently,
verification and validation (V&V) procedures and methodologies remain a key unresolved challenge for the validation of
highly automated driving functions. The impact of rapid advances in Artificial Intelligence (AI) in the last years also raises
a question about how to include them in a V&V procedure. New methodologies are required to improve their predictability
and transparency to ensure their trustiness in a safety-critical field such as driving and search & rescure. Appropriate
V&V procedures are required to put the latest autonomous driving functions into practice. Virtual or hybrid simulation
environments, testing, data production and management, adoption of standards, and the use of Machine Learning and Al
have some of the key roles in the current paradigm shift of Autonomous technologies validation.

4.1 Related Work
The road-testing of autonomous driving vehicles is costly and energy-consuming, not to mention posing a threat

to pedestrians. In light of this, I build a high-fidelity simulation platform based on ROS-Gazebo that simulates dynamic
environments with human-like road participants, different kinds of sensors, and vehicle dynamics for training and evaluating
of different driving technologies [3, 5, 6]. The aforementioned works about modeling various human-like driving behaviors
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could be used to test autonomous driving technologies in high-fidelity simulation environments, which is of great significance
to improve the safety of autonomous driving systems, as well as reduce their dependence on road tests. Additionally,
this digital twin could reduce the gap in Sim2real transfer, especially for training deep reinforcement learning-powered
prediction, decision-making, and motion planning of autonomous vehicles.

4.2 Future Directions
• Propose a standardised evaluation approach, including standard evaluation metrics and test beds for autonomous

driving, which exposes candidate models to a range of novel and dangerous scenarios to fully evaluate their driving
performance and safety levels.

• Achieve data and metadata generation for validation;

• Transfer multi-agent reinforcement learning policies for autonomous driving using sim-to-real;

References
[1] Mingfeng Yuan and Jinjun Shan. From naturalistic traffic data to learning-based driving policy: A sim-to-real study. IEEE Transactions

on Vehicular Technology, 2023.

[2] Mingfeng Yuan and Jinjun Shan. Deep reinforcement learning based game-theoretic decision-making for autonomous vehicles. IEEE
Robotics and Automation Letters, 7(2):818–825, 2021.

[3] Mingfeng Yuan and Jinjun Shan. Scalable game-theoretic decision-making for self-driving cars at unsignalized intersections. IEEE
Transactions on Industrial Electronics, 2023.

[4] THE 2023 INT´L CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS. https://uasconferences.com/2023_icuas/, 2023.

[5] Mingfeng Yuan and Jinjun Shan. Learning adaptive cruise control for autonomous vehicles using end-to-end deep reinforcement learning.
Singapore, 2023. The 49th Annual Conference of the IEEE Industrial Electronics Society.

[6] Mingfeng Yuan and Jinjun Shan. Game-theoretic decision-making for autonomous driving vehicles. In Autonomous Vehicles and Systems-A
Technological and Societal Perspective, pages 269–301. River Publishers, 2023.
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Contributions and Publications.
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Dear Professor,
The decision-making module is crucial for safe and efficient driving in autonomous ve-

hicles (AVs). However, AVs face significant challenges in coexisting with human driven vehicles
and making fast and optimal driving decisions in complex and unknown traffic environ-
ments with only partial observations (unknown driving behaviours of surrounding vehicles).

Predictions of the future motion of the other road users are not possible with absolute certainty.
Uncertainties due to simple vehicle dynamic model used within the framework, and/or an improper
estimation of the driver level of the other agents can lead to unsafe control actions taken by the AV. A
high fidelity dynamic model can be used to eliminate certain degree of uncertainty but is accompanied
by increased computational burden. Also, most likely, the interactions between vehicles in a given
traffic scenario might be short for the AVs to estimate an accurate driver model.

Modeling human-like driving behaviors is of great significant to improve driving safety since AVs
can exhibite human-like behaviors in order to be predictable for other human road users. Thus,
designing decision-making algorithms for autonomous vehicles in complex traffic scenarios are vital
and will be my research focus. Here are the three recent most significant contributions:

• Contribution #1 (IEEE RA-L):

I proposed a novel approach for implementing game-theoretic decision-making in combination
with deep reinforcement learning to allow vehicles to make decisions at an unsignalized intersec-
tion with partial observability, achieving an end-to-end self-play training. Sim2real transfer is
successfully achieved by building a high-fidelity simulator and domain randomization.

video link: https://www.youtube.com/watch?v=mPtoojXh2-s&t=6s

• Contribution #2 (IEEE TVT):

For the first time, to the best of our knowledge, I proposed an efficient training scheme called
Deep Recurrent Q-learning from Demonstration algorithm (DRQfD) for lane-changing decision-
making to address the low sample efficiency in reinforcement learning and the poor generalization
capability in imitation learning.

video link: https://www.youtube.com/watch?v=Svp2S1OaSB8&t=22s

• Contribution #3 (IEEE TIE):

An adaptive decision-making algorithm is designed using receding horizon optimization, level-k
game theory, and directed switching graph to address interactions between autonomous vehicle
and vehicles with varying driving preferences in complex unsignalized intersections, addressing
the challenges of computational complexity and scalability faced by game-theoretic algorithms.

video link: https://www.youtube.com/watch?v=q6vKrjqHD54&t=6s

In the next pages, I will share three recent journal publications.

Sincerely,
MingfengYuan
Department of Earth and Space Science and Engineering
Lassonde School of Engineering, York University, Toronto, Canada
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Deep Reinforcement Learning Based
Game-Theoretic Decision-Making

for Autonomous Vehicles
Mingfeng Yuan , Jinjun Shan , Senior Member, IEEE, and Kevin Mi

Abstract—This letter presents an approach for implementing
game-theoretic decision-making in combination with deep rein-
forcement learning to allow vehicles to make decisions at an
unsignalized intersection by use of 2D Lidar to obtain their observa-
tions of the environment. The main novelty of this work is modeling
multiple vehicles in a complex interaction scenario simultaneously
as decision-makers with conservative, aggressive, and adaptive
driving behaviors. The game model allows anticipating reactions of
additional vehicles to the movements of the ego-vehicle without us-
ing any specific coordination or vehicle-to-vehicle communication.
The solution of the game is based on cognitive hierarchy reasoning
and it uses a deep reinforcement learning algorithm to obtain a
near-optimal policy towards a specific goal in a realistic simulator
(ROS-Gazebo). The trained models have been successfully tested
on the simulator after training. Experiments show that the per-
formance of the lab cars in the real-world is consistent with it in
the simulation environment, which may have great significance to
improve the safety of self-driving cars, as well as may reduce their
dependence on road tests.

Index Terms—Deep reinforcement learning, cognitive hierarchy
theory, LSTM network, self-driving car, decision making.

I. INTRODUCTION

W ITHIN half a century, autonomous driving vehicles
(ADVs), together with human-driven vehicles (HDVs),

will be employed in traffic scenarios, where the interactions of
ADVs and HDVs will constantly occur. Current mainstream
level-4 autonomous driving solutions limits these interactions
rather than accelerate it. For example, in complicated interactive
cases, the ADV inclines to slow down and pause rather than
spontaneously find another way through [1]. Solving decision-
making problems for ADV in dynamic and interactive envi-
ronments is challenging since it is almost impossible by pre-
defining codes or rules. In addition, it has been estimated that
ADVs need to be running for 275 million miles without fatality

Manuscript received September 8, 2021; accepted November 29, 2021. Date
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to assure the same rate of reliability as existing HDVs [2].
There is no doubt that only the road-testing phase is already
costly and energy-consuming, not to mention posing a threat to
pedestrians. Therefore, to model various driving behaviors and
to test decision-making algorithms in high-fidelity simulating
environments are of great significance to improve the safety
of ADVs, as well as reduce their dependence on road tests.
Motivated by the necessity of developing simulating tools for
verifying and validating the autonomous driving systems run-
ning in traffic with both ADVs and HDVs, we mainly focus
on modeling vehicle interactions based on deep reinforcement
learning (DRL) and game theory (GT), since learning agents can
potentially discover such complex interactions automatically
through exploration, as behaviors and actions evolved, leading to
more successful driving experiences with data collected through
interactions in multiple agents environments (over time and/or
in simulation).

The interaction process of ADVs in real traffic scenes has
the following characteristics. First, the actions to be taken
by ADV will be affected by the actions of surrounding ve-
hicles, and vice versa. Secondly, vehicles not only cooperate
to avoid the collision but also compete due to their different
driving strategies, thus producing rich dynamic interaction be-
haviors. The driving policies of HDVs are unknown to ADVs,
which can only be estimated by observing actions taken by
opponents.

Several approaches are reported in the open literature to model
multi-vehicle interactions, including decision trees [3], [4],
dynamic Bayesian networks [5], partially observable Markov
decision processes [6], model predicted control [7], and data-
driven method [8], which serve primarily as high-level con-
trollers. Game theory, mathematical models of strategic inter-
action among rational decision-makers, can be used to study
the strategic reasoning of multiple vehicles and to model the
interaction behavior between vehicles. In traditional approaches,
the interaction behavior between agents is modeled by a one-
shot normal-form game, in which each vehicle will choose
driving actions (“move” and “wait”) through the payoff matrix
without considering the dynamic characteristics of the vehicle.
In addition, with the increase of the number of vehicles, the
computational complexity will increase exponentially, making
it challenging to realize real-time decision-making. In the current
study, [9], [10] exploited a game-theoretic approach to modeling
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vehicle interactions in highway or intersection cases. Li et al.
[11] modeled the interactions among vehicles at unsignalized
intersections using the leader-follower game. Tian et al. [12]
integrates a game-theoretic formalism, receding-horizon opti-
mization, and an imitation learning algorithm to obtain control
policies. Sankar and Han [13] proposed an adaptive control strat-
egy that accounts for the uncertainties in the vehicle dynamic
model and the driver model estimation. Our method largely
differs from previous works that usually rely on relatively simple
simulations without considering the noise existing in observa-
tion or dynamics in physical ADVs, thus imposing a large gap on
their application to real vehicles. The decision-making scheme
proposed in this letter relies solely on the onboard sensors,
without assuming any coordination, communication, or shared
control with the surrounding cars. Also, the actual actions and
movements of the vehicle are performed on a realistic simulator.

Another line of research learns driving behavior in simulation,
making it suitable for reinforcement learning (RL) because it is
possible to learn from failure cases during learning in a safe
environment. In addition, RL has proven effective at design-
ing control policies for an increasing number of tasks in both
single-agent systems and multi-agent systems, including navi-
gation [14] and wireless communication [15]. Leveraging such
methods for learning autonomous driving policies is emerging as
a particularly promising approach [16]. The unapologetic nature
of the trial-and-error process in RL compounds the difficulty of
ensuring functional safety. These adversities call for learning
that first takes place in simulation before transferring to the
real world [17]. This transfer, often referred to as sim2real, is
challenging due to discrepancies between conditions in simu-
lation and the real world (such as vehicle dynamics and sen-
sor data) [18]. Simultaneously, the act of colliding or nearly
colliding is essential to the learning process, enabling future
policy rollout to incorporate these critical experiences. How are
we to provide safe multi-vehicle learning experiences without
forgoing the realism of high-fidelity training data? There is a
shortage of work that addresses this challenge.

In this letter, we apply DRL along with GT to modeling de-
cision makers with different reasoning levels in an unsignalized
intersection case. What distinguishes our method from existing
studies is that all the drivers in a multi-move scenario make
strategic decisions simultaneously, instead of modeling the ADV
as a decision-maker and assuming predetermined actions for the
rest of the drivers. This is achieved by combining a cognitive
hierarchy theory also called level-k reasoning with a RL called
Dueling Double Deep Q-Network with Prioritized Experience
Replay (D3QN PER). Earlier studies [6], [9], [19]–[21] were
trying to combine RL with level-k theory so that agents can au-
tonomously learn policies with rich interaction behaviors. They
pointed out that it’s worth exploring how to extend to a more
general setting where a level-k agent selects its best response
to the action of the other agent who reasons according to a
distribution over lower levels instead of only at level-(k-1) [19].
Based on this, this letter introduces the LSTM network into a
RL to solve the hidden state problem, so as to effectively train
a policy that can adapt to the autonomous interaction in the
multi-strategy mixed environment.

Fig. 1. Four way intersection: Car 1 is ego car; Car 2, 3 and 4 are opponents
with different reasoning levels. Number 1 to 8 are the collision areas from the
perspective of ego.

This letter is organized as follows. In Section II, the problem
being treated in this letter is defined. In Section III, we apply
level-k game theory, LSTM network along with RL algorithm
to modeling decision-making for four cars in an intersection
scenario. The algorithm is tested in Section IV by both simu-
lator and hardware. The letter is summarized and concluded in
Section V.

II. PROBLEM DEFINITION

A. Modeling Scenarios

The unsignalized intersection was chosen as the scenario
in our work, since it’s much more complex than other traffic
scenarios, where each car chooses to enter the intersection area,
and drivers constantly interact with the surrounding road users
to safely and efficiently cross the intersection.

In this subsection, we will introduce a scenario consisting
of 12 paths and four cars, among which car 1 is ego vehicle
and the rest of the vehicles are opponents as shown in Fig. 1. To
better show the results, the problem can be simplified as follows.
The number of opponents ego encounters at the intersection
is generated randomly, which can be 0, 1, 2 or 3. Ego has
three tasks: turning left, going straight, and turning right. All
opponents go straight but have two optional trained policies,
namely conservative and aggressive driving behavior which is
unknown to the Ego vehicle. The details about training of various
driving policies are presented in Section III. It’s worth noting
that the method proposed in this letter can naturally be applied
to more complicated scenarios, where all cars have no limitation
on the path selection. In this research, there are 81 scenarios in
total as mentioned above since there are 24 combinations in the
case of ego versus three opponents, 36 combinations in the case
of ego versus any two opponents, and 18 combinations in the
case of ego versus one opponent. There are also 3 combinations
when the ego passes through an empty intersection. To focus
more on complex scenarios, the probability of having four cars,
three cars, two cars, and one car interaction scenario will occur
with probability 40%, 30%, 20%, and 10% respectively during
the training.

B. Observation Space

Lidar is one of the most important sensors in the development
of self-driving car because of its ability to adapt to different
lighting conditions and its robustness to the environment. The
point clouds generated by Lidar belong to long sequences infor-
mation. To process the point cloud data, the LSTM network with

Authorized licensed use limited to: York University. Downloaded on October 25,2023 at 21:53:17 UTC from IEEE Xplore.  Restrictions apply. 



820 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

512 cell units is used in this letter to deal with partially observed
environments. Due to various strategies of the opponent cars, the
ego car may be confused if it is heavily rewarded for selecting
an action in one state and then penalised for choosing the same
action in the same situation next time, making the training
process unstable. Therefore, the action chosen by ego depends
not only on the current observation but also on a fixed number
of the most recent observations.

The point cloud information is controlled to be 360 dimen-
sions; the frequency is 50 Hz; the detection distance is [0.1, 3]
m. In the intersection scenario, there are 8 collision areas where
ego vehicle and opponent vehicle’s path overlap, as shown in
Fig. 1.

To combat limitations of using only 2D Lidar, each vehicles’
distance to the collision points were added. Also, vehicle’s
own state information, and velocities of the opponent vehicles,
represented as an array [v1, v2, v3, v4, p1, p2, p3, p4], where
v1 to v4 are the speeds of car 1 to car 4 at each time step, and
p1 to p4 correspond to the path each car selected (obtaining
from turn signal) to further supplement the observation space.
It can be extended to more complex cases without loss of
generality.

C. Action Space

The action space includes 5 possible actions that each vehicle
can undertake:

1 Maintain: Maintain current speed.
2 Accelerate: Increase speed of vehicle at 1.5 m/s2, ignored

if maximum velocity is already reached.
3 Fast Accelerate: Increase speed of vehicle at 3 m/s2,

ignored if maximum velocity is already reached.
4 Brake: Reduce speed of vehicle at 1.5 m/s2, ignored if

vehicle is stationary.
5 Hard Brake: Reduce speed of vehicle at 3 m/s2, ignored if

vehicle is stationary.

D. End-to-End Control Scheme

The end-to-end scheme in this letter is proposed to model
different driving policies of self-driving cars at uncontrolled
intersection. Firstly, the features of 2D Lidar point cloud data
and car states are extracted through LSTM to generate obser-
vation information. Secondly, Q value is output through the
full connection layer with dueling structure. An improved al-
gorithm is proposed by combining the advantages of the tra-
ditional deep Q network (DQN), double DQN and Prioritized
Experience Replay (PER) algorithm, which is called D3QN
PER. Finally, the best action in each state can be generated by
choosing the maximum Q value. Since the intersection can be
represented by 12 paths, we used the pure pursuit controller to
generate steering commands. The research framework is shown
in Fig. 2.

III. DRIVER INTERACTION MODEL

The driver interaction model developed in this letter enables
the modeling of driver-to-driver and driver-to-autonomous vehi-
cle interactions through the use of level-k reasoning and D3QN

Fig. 2. End-to-end control scheme.

PER algorithm. The model is a “policy” which is a stochastic
map from the observation space of the driver to their action space
(see Section II). In other words, this map assigns a probability
distribution over possible actions for every observation. In the
following sections, we explain how this model is generated.

A. Level-k Reasoning

In order to model the strategic decision-making process of
human drivers, a game-theoretical concept named level-k rea-
soning is used. The level-k approach is a hierarchical decision-
making concept and presumes that different levels of reasoning
exist for different humans. The lowest level of reasoning in this
concept is called level-0 reasoning. A level-0 agent is a non-
strategic/naive agent since their decisions are not based on other
agents’ possible actions but consist of predetermined moves. In
one level higher, a strategic level-1 agent exists, who determines
their actions by assuming that the other agents’ reasoning levels
are level-0. Hence, the actions of a level-1 agent are the best
responses to level-0 actions. Similarly, a level-2 agent considers
other agents as level-1 and makes their decisions according to
this prediction. The Process continues following the same logic
for higher levels. In some experiments, humans are observed to
have at most level-3 reasoning, which may, of course, depend
on the type of game being played. To generalize, all level-k
agents, except level-0, presume that the rest of the agents are
level-(k-1) and make their decisions based on this belief. Since
this belief may not always hold true, the agents have bounded
rationality [22], [23].

B. Dueling Double Deep Q Network With Prioritized
Experience Replay Algorithm (D3QN PER)

In this letter, we use a more efficient algorithm by combining
all advantages of Dueling DQN, Double DQN, and PER called
D3QN PER [24] to train our ego vehicle. The comparison
of learning efficiency of different algorithms is presented in
Section IV.

The DQN algorithm [25] uses Q-learning to provide labeled
samples for the deep Q-network: Q(s, a; θ) with parameters θ,
which can be estimated by optimizing the following sequence
of loss functions at iteration i:

Li (θi) = E

[(
yDQN
i −Q (s, a; θi)

)2]
, (1)

with

yDQN
i = r + γmax

a′
Q
(
s′, a′; θ−

)
, (2)

where r is the reward for taking action a in given state s; a′

is next action taking in next state s′; γ is discount factor; θ−

represents the parameters of target network Q(s′, a′; θ−) which

Authorized licensed use limited to: York University. Downloaded on October 25,2023 at 21:53:17 UTC from IEEE Xplore.  Restrictions apply. 



YUAN et al.: DEEP REINFORCEMENT LEARNING BASED GAME-THEORETIC DECISION-MAKING FOR AUTONOMOUS VEHICLES 821

are frozen for a fixed number of iterations while updating the
online network Q(s, a; θi) by gradient descent. The specific
gradient update is

∇Li (θi) = E
[(

yDQN
i −Q (s, a; θi)

)
∇θiQ (s, a; θi)

]
. (3)

However, both Q-learning and DQN have overestimation
issue, since the max operator uses the same values to both select
and evaluate an action. Double DQN solves this problem by
using the following target instead of (2):

yDouble
i = r + γQ

(
s′, argmax

a′
Q (s′, a′; θi) ; θ−

)
. (4)

To accelerate the training, the key idea behind Dueling struc-
ture is that for many states, it is unnecessary to estimate the
value of each action choice. Because, at some states, all actions
of agent lead to the task to fail. Dueling structure can help to
decompose estimator as the sum of:

Q(s, a; θ, α, β) = V (s; θ, β) +A(s, a; θ, α), (5)

where one stream of fully-connected layers output a scalar
V (s; θ, β), and the other stream output an |A|dimensional vector
A(s, a; θ, α). Here,α andβ are the parameters of the two streams
of fully-connected layers. Eq. (5) is unidentifiable in the sense
that given Q we cannot recover V and A uniquely. To address
this issue of identifiability, the advantage function estimator can
be forced to have zero advantage at the chosen action:

Q(s, a; θ, α, β) = V (s; θ, β)

+

(
A(s, a; θ, α)− 1

|A|
∑
a′

A (s, a′; θ, α)

)
. (6)

The idea behind the PER is that some experiences may be
more important than others for training. We can take in priority
experience that has a big error between deep Q-network and
target netwark instead of selecting the experiences randomly.
To generate the probability of being chosen for a replay, we
have

P (i) =
pαi∑
k p

α
k

, and pi = |δi|+ e, (7)

where |δi| is the absolute Temporal Difference Error. Small con-
stant e assures that no experience has 0 probability to be taken.
If α = 1, it selects the experiences with the highest priorities
whileα = 0 for pure uniform randomness. Since we use priority
sampling, which leads to the bias toward high-priority samples.
To correct this bias, importance sampling weights (ISW) is used
to adjust the updating by reducing the weights of the often seen
samples [26],

ωi =

(
1

N
· 1

P (i)

)β

, (8)

where β controls how much the ISW affect learning, and N is
the size of replay buffer.

TABLE I
TRAINING OF LEVEL-K AGENT

C. Combining Level-k Reasoning With D3QN PER

To generate vehicles with different levels of reasoning, we
run the D3QN PER RL algorithm in our simulator, where the
ego vehicle is the level-k learner. According to level-k theory,
we assign our trained level-(k-1) policies (or predefined level-0
behavior) to the rest of the vehicles which constitute the envi-
ronment.

In the proposed approach, the predetermined, non-strategic
level-0 policy is the anchoring policy from which all the higher
levels are derived using D3QN PER. To obtain the level-1 policy,
a traffic scenario is created where all drivers are level-0 agents
except the ego car that is to be trained to best respond to
the level-0 policy. There are 5 predefined velocities (0.3 m/s,
0.6 m/s, 0.9 m/s,1.2 m/s, and 1.5 m/s) that opponents can choose
randomly. At level k = 0 of reasoning, opponent vehicles travel
at the selected constant speed without considering the motions
of others. To avoid collisions between opponents affecting the
training process of the ego vehicle, we set priority for speed
selection of each opponent. For example, car 2 can select a
speed first, and then car 4 will randomly pick a speed from
our pre-defined “safe speed set” to avoid collisions with car 2 at
collision area 2 (see Fig. 1). Finally, car 3 will randomly select
a safe speed to avoid collision with car 4. Once the training is
completed, the ego becomes a level-1 driver. The procedure for
obtaining the level-k policy through the proposed combination
of level-k reasoning and D3QN PER is explained in Table I,
where nd is the number of drivers.

Now, we have trained level-1 and level-2 policies in turn,
but the problem is that these trained models are based on the
assumption that all opponents are playing level-(k-1). If the true
strategies chosen by opponents do not meet this assumption,
the conflict between them will not be well resolved. The test
results in Section IV can well reflect this issue. To solve the
problem, all opponents will choose policy among trained models
following uniform distribution, and the ego car explores the
adaptive strategy in this mixed environment through D3QN
PER. Since each vehicle cannot access the driving policies of
others, all vehicles can observe only a partial state of the traffic
via the Lidar sensor.

To alleviate the hidden state problem, an LSTM recurrent
neural network is used in conjunction with the D3QN PER
algorithm to resolve the hidden state by making the chosen action
that depends not only on the current observation but also on a
fixed number of the most recent observations which is a black
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TABLE II
TRAINING OF ADAPTIVE AGENT

Fig. 3. Combination of level-k theory and RL.

box way to learn the pattern of various driving policy instead
of using Bayesian-based method to estimate the belief of driver
model of other vehicles. Training process of adaptive policy is
described in Table II.

It is noted that the hierarchical learning process explained
above decreases the computational cost since at each stage of
learning, the agents other than the ego agent use previously
trained policies and hence become parts of the environment. This
helps to obtain traffic scenarios, containing a mixture of different
levels, where all the agents are simultaneously making strategic
decisions. This sharply contrasts conventional decision making
approaches, in crowded traffic, where one driver is strategic
decision maker and the rest are assigned predefined policies that
satisfy certain kinematic constraints. A visual representation of
the process of combining level-k reasoning and D3QN PER is
given in Fig. 3.

D. Setting of Algorithm Parameters and Reward Function

Table III shows the parameter settings of the D3QN PER
algorithm. To speed up the training process, each sequential
training after obtaining the level-1 policy was done by loading
the previous model to the ego vehicle and assigning the starting
value of ε to 0.5 instead of 1.

In order to avoid insufficient exploration and to accelerate
convergence, the parameter of the ε-greedy method decrease
from 1 linearly according to the training steps, as shown in (9),
and remain unchanged until it equals ending value.

ε = ε− 1.0

Ntraining
. (9)

Parameter e in the PER algorithm is used to prevent the saved
experience from not being replay after TD-error equals 0. The
exponent α determines how much prioritization is used, with

TABLE III
PARAMETER SETTINGS

TABLE IV
SETTING OF REWARD FUNCTION

α = 0 corresponding to the uniform case. Parameter β fully
compensates for the non-uniform probabilities P (i) if β = 1.
It’s increased linearly according to (10).

β = β +
1.0

Ntraining
. (10)

The reward function shown in Table IV is used to evaluate the
performance of the ego vehicle, which encourages ego vehicles
to learn efficient human-driving behaviors. A reward function
was designed to penalize collisions or being in dangerous states,
and reward efficient behaviors, such as reaching the destination
or progressing.

According to the setting of reward function, the ego car will
receive a reward of 0.1 for reaching each checkpoint. If ego
successfully reaches the destination, when going straight, it
receives a reward of 2 points for passing the 20 checkpoints.
When a collision occurs, 5 points are deducted. When ego
vehicles and opponents cars are in a deadlock, 0.1 point will
be deducted for each time-step, which will be a total of -1.5
points for the maximum number of steps each episode. When an
ego vehicle reaches the destination, the score will be rewarded
2 points.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Comparison of Different Algorithms

To compare learning efficiency, all algorithms were trained
8,000 episodes in an environment where all opponents were
level-0 reasoning. All curves in Fig. 4 are smoothed with a mov-
ing average over 300 episodes. We can find that the prioritized
reply and dueling structure are the two most crucial components
of the D3QN PER algorithm, in that removing either component
caused a large drop in learning performance. Nature DQN and
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Fig. 4. Comparison of various DQN algorithms.

TABLE V
COMPARISON WITH EXISTING WORK

Dueling DQN perform worst during training, which could be
caused by the overestimation mentioned in Section III.

B. Simulation Results

?enlrg -6pt?>According to the scheme proposed in Section III,
we have successfully trained level-1, level-2, and adaptive driv-
ing strategies, respectively 1. After obtaining the trained po-
lices, we first tested the two scenarios of ego vehicles being
of level-k and opponents’ vehicles being level-(k-1) each for
1000 episodes, when k = 1, 2. They all have a success rate of
over 96%, which meets expectations of level-k theory. Then, the
trained level-1 policy and level-2 policy were tested on level-k
versus level-k scenarios for 1000 episodes each, k = 1, 2. These
scenarios have a much lower success rate, which is reasonable
because all the cars have wrong assumptions about the driving
policy of others. And the level-1 policies often result in deadlock
due to conservative driving behaviors, and level-2 policies often
result in collisions due to aggressive driving behaviors (see
Table V).

We also compared the performance of our algorithm with the
autonomous vehicle controller which is based on the driver in-
teraction models and online model estimation proposed in [10],
and their results are shown in the third column of Table V named
AV controller. We named our algorithm GTDRL since it is based
on GT and DRL. The comparison shows that our end-to-end
scheme integrating perception, decision, and control has better
performance in terms of the success rate than the results shown
in [10], which focuses on a simpler two-car interaction without
considering the noise existing observation information.

Finally, we tested the level-1, level-2, and adaptive policy
1000 times in the 81 scenarios following the distribution men-
tioned in Section II. As shown in the Table VI, the adaptive policy

1Video for both training and testing is available at https://youtu.be/
mPtoojXh2-s

TABLE VI
COMPARISON OF POLICIES IN MIXED ENVIRONMENT

has the highest success rate in all three policies, which measures
the ego vehicle’s ability to pass through the intersection without
collision and deadlock. The deadlock rate is highest for level-1
policy because it’s conservative driving behaviour that tends to
react by decelerating to a halt. Level-2 has the highest collision
rate because it models an aggressive driving behaviour that tends
to collide with other vehicles. The adaptive policy successfully
combines the advantage of both level-1 and level-2 policies to
reduce deadlock and collision when interacting in the mixed
scenario.

C. Hardware Implementation

To show the performance of the trained model, owing to
space constraints, we select four scenarios with four cars to
show the interactions among level-k vehicles at unsignalized
four-way intersection (see Fig. 1 left). We let four vehicles to
be controlled by different level-k policies and show how each
traffic scenario evolves depending on the different combinations
of level-k policies. It can be observed from Fig. 5 that when
level-1 (l1) and level-2 (l2) vehicles interact with each other,
the conflicts between them can be resolved. This is expected
since level-1 vehicles, representing cautious drivers, will yield
the right of way and level-2 vehicles, representing aggressive
drivers, will proceed ahead.

Columns (a)–(d) show five subsequent steps in a hardware
testing where each vehicle can be controlled by level-1 or level-2
policies that are pretrained in our simulator. The bottom panels
show the corresponding time histories of the four vehicles’ mo-
tion state (see Fig. 6). All paths are divided into 200 waypoints.
For each point the car reaches, the number of passed waypoints
increases by one, e.g., the number of passed waypoints is 1 when
the car is in its initial position and it’s 200 when the car reaches
its destination.

All vehicles are located outside the intersection at t = 0 s.
Column (a) shows the interactions of car 1 controlled by
the level-1 policy (conservative) with three cars controlled by
the level-2 policy (aggressive). Because car 2, 3 and 4 all use
the level-2 policy, they usually choose to pass the intersection
as quickly as possible. By observing the motion state of each
vehicle in Fig. 6, we can find that car 4 pass the intersection first
and does not take any deceleration action. Although car 2 and
car 3 also adopt level-2 policy, since car 4 enter the collision
area first, car 2 and car 3 chose to adopt deceleration actions of
different degrees at around t = 4 s based on their observation.
Car 3 is in front of car 1 at around t = 6 s, therefore, car 1 takes
deceleration action at around t= 5 s, and car 2 chooses to wait for
car 1 to pass the collision area again. Finally, all four cars safely
pass through the intersection in turn. Similarly, column (b) shows
car 1 and car 4 controlled by level-1 policy interact with car 2
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Fig. 5. A ten second sequence (see along the column) showing the interaction performed by the physical autonomous cars under (a) [l1-l2-l2-l2; car 1 going
straight]. (b) [l1-l2-l2-l1; car 1 going straight]. (c) [l1-l2-l1-l1; car 1 turning left]. (d) [l2-l1-l1-l1; car 1 turning right] policy settings in order of car 1–4 with all
opponents going straight. The numbers indicate the car IDs

Fig. 6. Time histories of the four vehicles’ motion states: (a) [l1-l2-l2-l2]. (b) [l1-l2-l2-l1]. (c) [l1-l2-l1-l1]. (d) [l2-l1-l1-l1].
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and car 3 controlled by level-2 policy. Car 2 and car 3 enter the
collision area first, and car 1 and car 4 take deceleration action
to wait them to pass at around t = 3 s. Column (c) shows car 2
controlled by level-2 interacts with others controlled by level-1
with car 1 turning left. Column (d) shows car 1 turning right
controlled by level-2 interacts with others controlled by level-1.
The last two situations are similar: the car adopting level-2
strategy will pass through the intersection first, and the other
vehicles with level-1 policy will pass through the intersection
subsequently.

The examples above show that trained models obtained from
simulator can deal with complex interaction scenarios without
knowing the policies of others, which verifies the feasibility of
our method for modeling different driving behaviors proposed
in this letter.

V. CONCLUSION

An adaptive game-theoretic decision making strategy with
DRL has been proposed for the ADVs sharing the road with
other drivers in a multi-agent traffic scenario. The interactions
between vehicles are modeled using a level-k game-theoretic
framework. The ego estimates the driver model of opponents
at each time step based on real sensor data and is shown to
use it to adapt its behavior in both simulation and hardware
implementation.

Both simulation results and hardware tests were reported and
showed that the vehicle interaction model exhibited reasonable
behavior expected in traffic. The performance of the model was
then evaluated based on several ways, including the success
rate, collision, deadlock, and snapshot of hardware testing. It
was shown that the adaptive model had reasonably high rates
of success in resolving traffic conflicts matching the expected
behavior of each reasoning levels.

The framework proposed in this letter for modeling multi-
vehicle interactions can be used as simulation tool for cal-
ibration, validation and verification of autonomous driving
systems. In addition, it may also be used in high-level decision-
making algorithms of ADVs, and to support intersection automa-
tion/autonomous intersection management. Moreover, vehicle
interactions in some other traffic scenarios, such as highway
merging and driving in parking lots, can be modeled based on the
proposed framework with modified road layouts and geometries.
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From Naturalistic Traffic Data to Learning-based
Driving Policy: A Sim-to-Real Study

Mingfeng Yuan, Student Member, IEEE, Jinjun Shan, Senior Member, IEEE, and Kevin Mi

Abstract—Reinforcement learning (RL) is a promising way
to achieve human-like autonomous driving (HAD) in complex
and dynamic traffic, but faces challenges such as low sample
efficiency, partial observability, and sim2real transfer. In light of
this, a comprehensive solution for RL-driven HAD is established.
First, an efficient training scheme called Deep Recurrent Q-
learning from demonstration algorithm (DRQfD) is proposed for
lane-changing decision-making to address the low sample effi-
ciency in RL and the poor generalization capability in Imitation
Learning (IL). The inherent LSTM structure potentially learns to
predict future states of surrounding vehicles, helping to address
the partially observable problem in autonomous driving (AD).
Second, to reduce the sim2real gap, a twin high-fidelity simulator
is built based on ROS-Gazebo for simulating LiDAR sensing,
model training, and evaluations. Domain randomization is used
to improve the robustness and generalization ability, making it
easier for the model to be transferred to real-world scenarios.
In addition, for the multi-objective optimization and imbalanced
data issues in this scenario, a hierarchical decision-making frame-
work is proposed to decompose the complex decision-making
problem into several subtasks, making the driving policies easier
to converge. To avoid the excessive dependence of the decision-
making module on the output of perception module in modular
systems, we train each modularized skill in an end-to-end manner.
Moreover, we compare our method with a vanilla RL method to
show improvement in learning efficiency. Comparisons between
RL-based model and IL baseline in terms of safety, travel
efficiency, and human-likeness are also given. To further validate
the generalization ability of our model, we test the model on real
traffic dataset. Finally, we implement the RL model on physical
cars to demonstrate the performance of sim2real transfer.

Index Terms—Human-like driving behavior modeling, rein-
forcement learning, Imitation learning, sim2real.

I. INTRODUCTION

AHighly intelligent and robust autonomous driving sys-
tem (ADS) is of great importance in improving driving

safety and travel efficiency. In recent years, learning-based
autonomous driving technology has become a research hotspot
in both academia and industry. Compared to imitation learning
(IL), optimizing long-term goals and policy exploration give
RL a great potential advantage in achieving human-like driving
behavior, that can cover extreme driving conditions. However,
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applying RL to the decision-making of AD still faces several
challenges that need to be addressed, including i) low sample
efficiency, requiring a massive amount of interactions; ii) in-
complete observation information, leading to unstable training;
iii) gap in sim2real, leading to difficulties in transferring
models from simulation to real-world applications.

Instead of learning from scratch, there are three categories
of methods that can help RL methods to speed up training
process: (1) rule-based guidance [1], aiming to reduce unrea-
sonable exploration behavior; (2) human-based guidance [2],
incorporating human intervention during the training process;
(3) IL based guidance [3], [4], utilizing human demonstration
to pre-train and/or train RL network. The method proposed
in this paper belongs to the third category. We use limited
expert demonstration to improve the learning efficiency of
Dueling Double Deep Recurrent Q-learning with Prioritized
Experience Replay algorithm (D3RQN PER) to model the
decision-making in complex lane-changing scenarios as par-
tially observable Markov decision process (POMDP) problem
[5]. The small amount of expert demonstration in this study
serves two main purposes: i) initializing the parameters of
the RL network before interacting with the environment, and
ii) increasing the probability of the vehicle taking the correct
actions during early exploration through the guidance of IL.

Lane-changing decision-making is a typical multi-objective
problem, including adaptive cruise control (ACC), switching
lanes, and merging. An effective way to solve such problems
is to design each modularized skill through a hierarchical
decision-making framework. The high-level strategic module
is mainly responsible for macro-level decision-making with
optimization goals including travel efficiency and safety. It will
trigger a specific task that needs to be executed by technical
level submodules in real-time based on the environment states.
When the ACC module is activated, it will control the longitu-
dinal motion of the autonomous vehicle (AV) with optimiza-
tion goals including comfort, driving speed, and safety. When
the lane-changing task is triggered, it will plan a collision-free
and smooth trajectory to switch lanes. Currently, the industry
commonly adopts a hierarchical decision-making framework
for modular ADS consisting of perception, decision-making,
and control. Although rule-based methods can create policies
for each submodule effectively, they face challenges when
scaling to complex scenarios, exhibiting overly conservative
driving behavior. To address this problem, some works have
attempted to use the RL-based method to learn each modular-
ized skill in a hierarchical decision-making framework.

The main difficulties of decision-making for AVs in com-
plex traffic scenes are twofold: 1) the behavioral patterns
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and intents of other vehicles are complex and cannot be
directly observed, therefore, the capability of interaction with
surrounding vehicles is needed and 2) the perception of the
AVs is uncertain due to noise and occlusions. Given difficulties
mentioned above, the decision-making process of AVs is a
POMDP, which can cause instability during training and pre-
vent the policy from converging. In this work, we consider the
multi-vehicle interaction scenarios, where the driving behavior
of AVs is influenced by surrounding vehicles, and vice versa.
Second, we employ an LSTM network to stabilize the training
process of DRL and address the POMDP problem. The LSTM
network implicitly learns and predicts the driving behavior
of surrounding vehicles by inputting past multiple frames of
point cloud data as state input for DRL, which help reduce
the ambiguity of LiDAR-based end2end AD given unknown
behavioral patterns and intentions of surrounding vehicles.

RL training requires policy exploration, which is not fea-
sible in safety-critical applications such as AD. A promising
solution is to learn policies through high-fidelity simulators
and transfer the model to real-world application scenarios.
The most challenging problem lies in the sim2real gap, which
comes from three aspects: (i) the difference in perception
level; real traffic scenarios are more complex than the sim-
ulated environment. (ii) The raw data generated by the sensor
hardware is noisy. (iii) The difference between the interaction
features in the simulated environment and the real scene.
We reduce the gap of sim2real in three main ways. First,
to support the end2end training, we developed a high-fidelity
simulator based on ROS-gazebo that can simulate sensor data
and vehicle dynamics. Second, thanks to the URDF parameter
format setting supported by ROS, we can keep the dynamics
and sensor data of the virtual vehicle as close as possible
to the physical vehicle. Third, to learn human-like driving
behavior, we adopt reality-guided domain randomization, and
we match the simulator with the real world by referring
to the statistical distribution of real traffic data (e.g., action
distribution, distance distribution). Finally, in terms of sensor
selection, compared with vision-based solutions, LiDAR is
suitable for different lighting conditions, which facilitates the
migration of models to hardware.

The main contributions of this paper are listed as follows.
• A learning-efficient DRQfD framework is proposed to

model lane-changing decisions as a POMDP, in which a
small amount of expert data is employed to pre-train the
RL network parameters and train the IL policy to guide
early policy exploration for the vehicle.

• End-to-End modularized skill-based decision-making
framework with two layers of hierarchy (strategic and tac-
tical planner) is proposed to address the multi-objective
problem in complex lane-changing scenarios.

• A comprehensive test is carried out in both randomly
generated scenarios and real traffic data. Qualitative and
quantitative comparisons between our method and IL
baseline are also given to show the driving performance
in terms of safety, travel efficiency, and human likeness.

• Sim2real transfer is successfully achieved by building a
high-fidelity simulator and Domain Randomization. Ex-
perimental verification is carried out. The RL model can

be directly applied on the hardware platform, exhibiting
driving behavior consistent with it in the simulator.

The rest of the paper is organized as follows. Section II
introduces some related works. Section III defines the re-
search problem and describes the proposed DQRfD algorithm.
Section IV introduces the trajectory generation and low-level
controllers in both longitudinal direction and lateral directions.
Section V describes the human driving data set and the
implementation details. Section VI provides the experimental
results. Section VII concludes this paper.

II. RELATED WORKS
A. Human-Knowledge-Based Learning Method

Some researchers have proposed using prior knowledge
from humans to guide the interaction of RL in a training
environment, as opposed to training policies from scratch.
To prevent unsafe exploration, [1], [6] suggested the addition
of a rule-based safety check module to the RL-based control
system to achieve fast training. In [7], a human-guidance-based
learning method allowing human experts to intervene in the
interaction process in real-time was proposed to speed up the
training of RL agents. However, this approach comes at the
cost of increasing human workload. To solve this problem,
Hug-DRL [2] was proposed with the aim of reducing the
human workload and enhancing the performance of RL for
training and testing on AD by utilizing intermittent guidance.
Another promising method is to use limited demonstration data
to pre-train an expert policy that can achieve a reasonable
level of performance. IL is an effective method to mimic
expert behavior. However, it performs poorly in some scenarios
where the training data is not covered, especially in some
extreme conditions (e.g., collision, near-collision). Therefore,
a reasonable idea is to combine the strengths of IL and RL to
efficiently train a robust model. In [3], [4], [8], the authors
employed an imitative expert policy to aid in the learning
process of the actor-critic-based RL agent for different traffic
scenarios. Another approach is to design a loss function that
enables the IL algorithm to learn the value function of actions
in certain states, thereby achieving pre-training of the RL
network [9], rather than learning the expert behavior policy
based on a classification task.

B. Hierarchical Decision-Making

There have been several studies addressing the decision
making problem for AD through a hierarchical decision
framework. In [10], the authors used the DQN algorithm to
learn the longitudinal control policy in a highway case with
some assumptions about the high-level policy. In [11], the
authors proposed an effective state-action abstraction and a
hierarchical training framework for RL to achieve multi-lane
cruising, and demonstrated that the model trained in a non-
dynamic simulation environment has good transferability in
a more realistic simulator. However, a challenge faced by
above methods is that the decision module overly relies on
the performance of the perception module. The failure of the
perception module may result in fatal traffic accidents [12].
The hierarchical decision-making framework used in this work
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is different from previous research. High-level policy and ACC
are trained respectively in an end-to-end manner with LiDAR-
based observation. These modules directly learn features that
affect decision-making from the raw sensor data, thereby
preventing an excessive dependence on the performance of
the perception module.

C. End2End Scheme and Sim2Real Transfer

ALVINN is the first work of IL for an end-to-end AV [13],
[14]. Then, more complex and successful end-to-end driving
systems were developed in [15]–[17], which utilized multiple
cameras, enabling the system to extract distance information
and learn to control the lateral motion of vehicle in an end-
to-end fashion. Recently, various deep reinforcement learning
(DRL) methods have been used to train LiDAR information-
based end2end AD and navigation policies. In [18], the authors
utilize unsupervised contrastive learning to differentiate be-
tween similar and dissimilar pairs of high-dimensional LiDAR
data to learn representations of environments. While, in [19],
the author used a CNN network to learn environmental features
by converting LiDAR point clouds into gray images, achieving
motion control in a static environment. To train the local
navigation policy, in [20], a single frame of laser scan is
combined with polar coordinates of waypoints to achieve
collision-free exploration tasks.

Sim2real transfer is a class of methods to bridge the
reality gap, connecting and integrating digital entities in sim-
ulations with their physical counterparts in the real world.
Currently, the work on sim2real transfer can be divided into
two categories, namely Domain Adaptation (DA) and Domain
Randomization (DR). GAN is a popular technique in the
field of DA for transforming synthetic images to resemble
those captured from the Target Domain [21], [22]. While DR
is a simple yet effective concept that operates by random-
izing the dynamic properties of the Source Domain while
undergoing training [22]–[24]. Recently, some researchers also
start focusing on MARL sim2real transfer. They use domain
randomization to develop their multiple autonomous vehicles
and multiple unmanned aerial vehicles for different application
backgrounds [25], [26].

III. METHODOLOGY

A. Problem Formulation

In lane-changing scenarios, vehicles must be able to adjust
their actions to fit into the dynamic traffic environment safely
and efficiently. Given the unknown driving behavior and
intentions of the surrounding vehicles, the decision-making
problem of AV in lane-changing scenarios can be modeled as
a POMDP [27]. To train driving policies, this paper proposes
a hierarchical decision-making architecture, as shown in Fig.
1, which is mainly divided into two levels. The first is
the high-level decision-making module achieved by Global
DQN Network, which is about transitioning between discrete
actions including car-following, changing the lane to the left,
and changing the lane to the right subject to the following
conditions:

• Safety - releasing restrictions on lane-changing action
under the condition that there will be no collision with
surrounding vehicles.

• Travel efficiency - navigating the ego vehicle to the target
lane where the car can drive faster.

In other words, this module should be able to give AV a
strategic task to perform at the current stage after observing
the surrounding environment.

Next, once the car following command is generated from
the high-level decision-making block, Local DQN Network
will serve as a tactical module to maintain a safe distance and
speed with the vehicle in front of AV while considering travel
speed, comfort, and reducing energy consumption. Trajectory
generation is a non-learning-based tactical module. It will gen-
erate a smooth and comfortable trajectory using a fifth-order
polynomial according to its current lane and speed, as well as
the target lane and target speed when getting a switching lane
command from the high-level module. However, the outputs
from the Local DQN Network and trajectory generation block
are still at the command level, such as the desired acceleration,
velocity, position, and steering angle. Ideal driving behavior
requires precise control performance, which can be guaranteed
by implementing a low-level control module consisting of
throttle control and steering control. In the following sections,
we will introduce how to implement the above modules in
detail.

Fig. 1: Hierarchical decision making framework.

B. Observation Information

When driving a car, we make decisions primarily based on
the information captured by our eyes. However, the driving
policies of the surrounding vehicles are unknown to us, and
we have to observe them for a period of time to approximately
estimate their future motions. Therefore, in our study, we
prohibited the use of accurate speed and position information
from other vehicles. All observations were obtained from
onboard 2D LiDAR plus the ego vehicle speed. It is worth
noting that the method proposed in this paper can also be
extended to 3D LiDAR, but requires more computational
power.
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In this work, the LSTM network is used to implicitly learn
and predict the driving behavior of surrounding vehicles by
feeding the past multiple frames of point clouds concatenated
with ego speed and lane information to the DRL. It can help
reduce the ambiguity of LiDAR-based end-to-end AD to stable
training processing of DRL. Since we are using a 2D LiDAR
which is mounted on the top of the car, to enhance the point
cloud data from the LiDAR detection of surrounding cars,
we mounted an isosceles triangle frame behind LiDAR. The
scanning region of LiDAR is [135◦, -135◦] and the scanning
range is set to [0.1, 2.5] m. The scanning frequency is 12 Hz
with 1160 points. The left image in Fig. 2 shows a bird’s-eye
view of the simulated environment, displaying the LiDAR scan
of surrounding vehicles from the perspective of the ego vehicle
(denoted as ”1”), with other numbers representing surrounding
vehicles. The right image shows the corresponding hardware
testing environment, where the ego vehicle is in the middle
lane with a blue triangular frame. The point clouds scanned
by the ego LiDAR hardware is provided in the right figure.
We distinguish surrounding vehicles with dashed circles in
different colors.

Fig. 2: Simulation and hardware test environments.

C. Reward Function and Action Space

To avoid manually designing a large number of predefined
driving behaviors like rule-based methods, we adopt a coarse-
grained reward function to encourage RL to learn near-optimal
driving behaviors through exploration. A punishment mecha-
nism is added to prevent the car from learning unsafe driving
behaviors based on human common knowledge.

1) Car Following Policy: According to the US101 data
[28], the intervehicle distance is mainly maintained between
11 m and 25 m above about 50% of the time. The distribution
of intervehicle distance can be found in section IV. Because the
size ratio of the car used in our study and a sedan car is 1:10.
Therefore, the values for both the distance and the acceleration
will be divided by 10 to define our reward function and action
space.

The stage reward function for car following is defined as

R = w1ϕ1 + w2ϕ2 + w3ϕ3 + w4ϕ4 + w5ϕ5 (1)

where ϕi represent indicator variables and wi are the weight
variables where i ∈ [1, 5]. The values of weights correspond-
ing to each factor are shown in Table I. If a collision occurs,
indicator variable ϕ1 equals to 1, otherwise 0. According
to the distance (D) between the ego vehicle and the car in
front of ego car (to simplify the description, we denote this
vehicle as the leader vehicle), three zones are defined: unsafe

zone (D ∈ [0.5, 1.1] m), interaction zone (D ∈ [1.1, 2.5]
m), and safe zone (D ∈ [2.5,+∞] m). When ϕ2 =1, it
indicates that the leader vehicle is in its unsafe zone, and is
0 otherwise. When ϕ3=1, which indicates that the leader car
is in its interaction area. Ego car is encouraged to maintain
a relative velocity of 0 m/s to the leader vehicle. When ϕ4
= 1, the leader car is outside the interaction area, and we
encourage the ego vehicle to keep the speed above the average
speed. The fifth term, ϕ5 is introduced to consider energy
consumption (or unnecessary driving actions) and equals to
2 if the action is a hard acceleration or a hard deceleration,
1 if the action is acceleration or deceleration, and 0 if the
action is maintain. The action space of the car following
policy consists of five actions: maintaining the current speed
(0 m/s2); hard acceleration (1.2 m/s2); hard deceleration (−1.2
m/s2); acceleration (0.6 m/s2); deceleration (−0.6 m/s2). This
discrete representation of the action space is based on the
distribution of vehicle accelerations obtained by processing the
real traffic data [27], [29], which is recognized as a reasonable
approximation to the set of human drivers’ actions in highway
traffic. It should be pointed out that we set speed saturation
during training and evaluation, thus, the AV is only allowed
to drive within the maximum speed. When the AV reaches the
maximum speed, it cannot further obtain additional rewards
through increasing speed. Therefore, the AV will finally learn
to maintain its highest speed (by choosing 0 m/s2) when there
is no leader vehicle in the current lane by the trade-off between
travel efficiency and energy consumption factors.

TABLE I: Setting of Reward Function

Conditions Values

Collision violation (w1) -1000
Unsafe zone violation (w2) −( 1.1

D
)3

Relative speed (w3) −2 · |vego − vfront|
Travel efficiency (w4) vego − (vmax + vmin)/2
Energy consumption (w5) -0.6
Note: vmax = 1.5 m/s, and vmin = 0.0 m/s.

2) Lane-Changing Policy: For the high-level module, we
expect the ego car to learn a more efficient driving behavior
similar to that of an experienced driver. That is, the ego
car will take any opportunity to navigate to the target lane
where it can gain a higher speed under the premise that it
will be collision-free. Therefore, we list some unsafe driving
behaviors and encouraged the car to change lanes without
triggering penalties. To obtain a positive reward during the
training process, the ego car needs to avoid the following
unsafe lane-changing behaviors:

• The penalty is -1 for lane-changing, if there’s no leader
vehicle in the current lane within the LiDAR detection
range.

• The penalty is -1.5, if the car in front in the current lane
is farther than the car ahead in the target lane.

• The penalty is -5, if a collision occurs during lane change.
The action space of the high-level module consists of

{switching left, switching right, car following}. To simplify
the training scenario, we assume that the speed of the ego
vehicle before and after the lane change remains the same.
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The logic behind this assumption is that the ego vehicle first
generates a trajectory to a target lane where it can gain higher
speed, and then accomplishes the acceleration goal in the
target lane by using a trained car-following policy. Trajectories
are generated based on the fifth-order polynomial under the
following boundary conditions: (1) the target speed of the
trajectory is the ’same’ as the current speed, and (2) the target
position of the trajectory is the location in the target lane right
’behind’ its leading vehicle in the original lane to achieve a
safe lane change.

It shold be notied that to obtain more flexible trajectories,
we can modify the boundary conditions of the fifth-order
polynomial by expanding the action space of the high-level
module such as {switching left faster, switching right faster,
switching left, switching right, Car following}, where the
constraints of polynomial trajectory for switching lanes faster
are (1) the target speed is ’higher’ than the current speed, and
(2) the target position of the trajectory is the location in the
target lane ’parallel’ to the leading vehicle in the original lane.

D. Deep Recurrent Q-learning from Demonstrations

Given the high-fidelity simulator, we can manually collect
human demonstrations and automatically score the expert’s
action at a certain state according to the pre-designed reward
function. To enhance the training efficiency of RL, we propose
a DRQfD framework, which involves using a small set of
demonstrations to pre-train RL network, followed by imitation
learning (IL) to guide its early exploration. Given the LiDAR-
based perception scheme and the POMDP, the Dueling Double
Deep Recurrent Q-learning with Prioritized Experience Replay
algorithm (D3RQN PER) [30], [31] becomes an ideal choice
for our RL algorithm. The parameter setting of algorithm is
shown in Table II.

1) Pretrained RL Network: The pre-training phase aims
to teach the agent to imitate the demonstrator while also
satisfying the Bellman equation for its value function, which
can then be updated through TD error during interaction with
the environment. To get pretrained RL Network, the learning
vehicle updates the network by sampling mini-batches from
demonstration data and applying four losses. These include 1-
step and n-step double Q-learning losses to ensure the network
satisfies the Bellman equation, large margin classification
loss to enforce the value of the demonstrator’s action, and
L2 regularization loss to prevent over-fitting on the small
demonstration dataset. The details of the loss function im-
plementation can be found in [9].

2) IL-Based Guidance Policy: After completing the pre-
training phase, a hybrid policy combining ϵ-greedy exploration
and Guidance policy, is used to increase the probability of
the vehicle taking the correct actions during early exploration
through the IL-Based Guidance policy. During the ϵ-greedy
exploration process, learning vehicle has a certain probability
of taking actions generated by IL, which needs to be adjusted
to balance exploration and exploitation to mitigate the bias
introduced by using an IL policy on the replay buffer. It should
be noted that both RL and IL use LSTM network to process
a fixed number of past sequential observations as input.

3) Experience Replay: During the RL training, the learning
vehicle interacts with surrounding vehicles in the simulator,
generating its own data and adding it to the replay buffer
Dreplay. The expert demonstration data will be permanently
stored in the experience replay buffer Dexpert and assigned a
constant value in PER to ensure that the data is sampled during
the training process.

4) IL Training: In order to avoid increasing human work-
load, both pretrained RL network and IL Guidance policy
mentioned earlier are trained on a small amount of demon-
stration data collected by a human player using our simulator.
To ensure a fair comparison of the performance between RL
policy and IL Guidance policy in Section V, we increase the
amount of demonstration data to the same number as RL
training episodes. For both the IL Guidance policy and the
IL Baseline policy, we performed supervised classification of
the demonstrator’s actions using a cross-entropy loss, with the
same network architecture used by RL. Additionally, we still
used L2 regularization loss to prevent overfitting of the model.

TABLE II: Parameter Settings

Parameters Values

Discount factor (γ) 0.95
Learning rate 0.001
Starting (ending) value of ϵ greedy policy 1 (0.01)
Number of car-following actions 5
Number of high-level module actions 3
Size of replay memory (Dreplay) 10000
Size of expert memory (Dexpert) 2000
Number of steps to update the target network 100
Mini-batch size 32
e 0.00001
Priority (α) 0.6
Adjusting the deviation (β) 0.4
N-step returns (steps) 10

E. Simulation to Real World

For RL training, a high-fidelity simulator is developed
based on ROS-Gazebo. To reduce the sim2real gap, Do-
main Randomization is adopted to improve the robustness
and generalization ability of RL policies by randomizing
the dynamic properties of the Source Domain. In this work,
key factors for closing the sim2real gap include perception,
environment complexity, vehicle dynamics, and interaction
features. Regarding the perception, we adopt a LiDAR-based
end-to-end scheme, since the LiDAR is insensitive to different
lighting conditions. Thanks to the URDF setting supported
by ROS, we can keep the dynamics and sensor data of the
virtual car as close as possible to the physical car. We set our
simulator parameters based on the data obtained from system
identification of physical cars, such as the physical prop-
erties (e.g. mass, inertia, geometry) and LiDAR parameters
(e.g. sampling frequency, noise, detection range). Real-world
scenarios are more complex than the simulated environment,
which could also affect the performance of RL models. As
we conduct hardware tests indoors, in order to avoid the
influence of irrelevant indoor obstacles on the model, we
limit the maximum detection distance of LiDAR to 2.7 m
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and apply a mask function to set the point cloud data beyond
the detection range to 0. In addition, during the training and
hardware evaluation phases, point cloud data and ego speed
are normalized based on their maximum value settings before
feeding into the RL algorithm. Finally, to make the trained
model generalize well in the test scenarios, we encourage the
vehicle to experience as many interaction scenarios as possible
during training by randomizing dynamic properties including
the position and velocity of surrounding vehicles. Training
scenarios and reward functions can be effectively designed by
referring to the distribution of human driving characteristics
(e.g., inter-vehicle distance and driving action) in real traffic
data, as described in Section II-C and IV-A.

IV. LOW LEVEL CONTROL

In the previous section, we introduced the idea of car
following and lane-changing tasks using the “End-to-End”
DRL method. However, once the car gets the acceleration
command and steering command from the high-level module,
the control performance needs to be guaranteed by implement-
ing controllers. Therefore, at the Low-Level module, the PID
controller was used to realize longitudinal control, and the
Stanley controller was used to achieve lateral control.

A. Trajectory Generation Module

In real driving scenarios, we prefer a smooth trajec-
tory. Therefore, we choose to use a fifth-order poly-
nomial [32] to generate a trajectory for lane-changing,
which allows us to specify six boundary conditions
(x(t), ẋ(t), ẍ(t), y(t), ẏ(t), ÿ(t)) (position, velocity, accelera-
tion in both longitudinal and lateral direction) at both ti = 0
and tf = T , where T is the terminal time for finishing lane-
changing. For simplicity, we assume that the initial and final
accelerations are 0, and the final velocity equals to the initial
velocity. The reference trajectory can be expressed as Eq. (2).
Each equation has 6 coefficients.

x(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0

y(t) = b5t
5 + b4t

4 + b3t
3 + b2t

2 + b1t+ b0
(2)

Then the time-dependent parameter matrix can be defined
as Eq. (3):

M6×6 =



t5i t4i t3i t2i ti 1
5t4i 4t3i 3t2i 2ti 1 0
20t3i 12t2i 6t1i 2 0 0
t5f t4f t3f t2f t1f 1

5t4f 4t3f 3t2f 2t1f 1 0

20t3f 12t2f 6t1f 2 0 0

 (3)

B. Lateral Control

The Stanley controller achieves lateral control primarily
by eliminating heading error ψ(t) and cross-track error e(t).
ψ(t) is defined by the angle between the trajectory heading
and the car heading. e(t) is the shortest distance between
the center reference point of the front wheels (xc, yc) and
the path (xt, yt) at current time t. v(t) represents the linear
speed of the front wheels, and the steering angle is denoted

as δ(t). Considering the angle constraint of the vehicle,
δ(t) ∈ [δmin, δmax], the controller can be expressed as Eq.
(4) [33].

δ(t) = ψ(t) + tan−1

(
ke(t)

ks + v(t)

)
(4)

where a softening constant, ks, is added to ensure the denom-
inator is non-zero. The parameter k is a constant.

C. Longitudinal Control

A PID controller is used to compensate the error in the
speed. It looks at the current vehicle speed and adjusts the
throttle to match the desired speed from the high-level module.
The controller can be expressed as Eq. (5):

u = KP (vd − v) +KI

∫ t

0

(vd − v) dt+KD
d (vd − v)

dt
(5)

Th = k ∗ vd + u (6)

Therefore, the throttle command Th can be represented by
the control law in Eq. (6) [34].

V. EXPERIMENTAL VALIDATION

A. Implementation in Car-Following Scenarios

The distribution of the distance to the leader vehicle in car-
following scenarios maintained by human drivers is shown
in Fig. 3a. Since the size ratio of our scaled model to a
real vehicle is 1:10, the distance value considered in both
training and testing environment is 10 times smaller than that
in the real world. The simulated environment consists of six
scaled cars and three 100-m road segments. One car is the
ego vehicle, and the others are surrounding vehicles that adopt
rule-based driving policy. To train and evaluate the ACC using
the scaled model, we set the initial intervehicle distance to
obey the uniform distribution between 0.5 m and 3.0 m with
maximum LiDAR detection of 2.7 m. The maximum speed
limit of surrounding vehicles in each episode obeys uniform
distribution between 0.5 m/s and 1.5 m/s. The maximum speed
limit of the ego vehicle is 1.5 m/s. The trained model was
tested on 1000 randomly generated scenarios. Testing results
indicate that the ego vehicle can always maintain a safer
driving distance with the leader car when performing the car
following task. The distance between the ego vehicle and the
leader vehicle follows a normal distribution with µ = 1.85 and
σ2 = 0.8 m, as shown in Fig. 3b. In Fig. 3b, the blue bars
represent the distribution of initial distance between the ego
vehicle and the leader car, and the orange bars represent the
distribution of average intervehicle distance in each episode,
which is similar to the distribution of intervehicle distance in
the real traffic data, especially in the detection range, as shown
in the Fig. 3a.

B. Pretraining and Baseline Comparison

To benchmark the performance of the RL-based high-
level policy, human player policy and IL-based policies are
considered in this work as baselines. All policies use our
trained car following policy to achieve the ACC on the current
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(a) US-101 data set (b) Testing results

Fig. 3: Distribution of distance to the car in front.

lane. We randomly generated 100 evaluation scenarios, and the
tested vehicle randomly selected a lane to start the test (0: left
lane; 1: middle lane; and 2: right lane). The maximum speed
of the ego vehicle is set to 1.5 m/s, while the speed limit for
other vehicles in each episode is uniformly distributed between
0.5 to 0.8 m/s. In addition, the longitudinal distance between
surrounding vehicles and the ego vehicle follows a uniform
distribution between 1.0 to 3.0 m. All vehicles are located in
front of the tested vehicle and each lane is guaranteed to have
at least one vehicle.

We had a human player drive the tested vehicle in simulated
environments 100 times using joystick. Each episode was
played either until the driving task terminated or exceeded
50 seconds. During the human player driving, we collected
the vehicle’s laser scan concatenated with ego speed and
lane number, actions, rewards, and terminations. This data
serves two purposes. First, pretrained RL network and the IL
Guidance policy are trained on this small dataset. Second, IL
Guidance policy will also be regarded as one of baselines
for later comparison with DQRfD policy. We noticed that
the data related to the car following scenarios is about 20
times that of the data for changing the lane to left or right.
Therefore, the pre-trained model is more easily to converge
to a local optimal policy (i.e., following strategy). To ensure
a fair comparison between the RL policy and the IL Baseline
policy, we increased the demonstration data to 700 episodes
(equivalent to 28,000 steps, close to the total training steps of
the RL algorithm). To avoid overfitting the model, we balanced
the number of three types of scenarios in the training dataset.

C. Naturalistic Human Driving Data Set

To further evaluate the generalization ability of the RL
policy, we test the RL-based high-level model on real traffic
data. We randomly selected 100 vehicles with lane-changing
behaviors from real traffic data containing 3000 vehicles for
comparison. The data was recorded by eight cameras for 10
minutes of all vehicle information in the US101 road segment
with a length of 640 m. The data includes vehicle number,
global time, position, speed, and lane number. A total of 25
types of information were recorded [28]. The road consists of
six lanes, each with a lane width of 3.66 m. The sixth lane
is the on-ramp, the off-ramp, and the auxiliary lane between
them. The actual road structure is shown in Fig. 4a. Since

some vehicles need to leave the expressway via the off-ramp,
their lane-changing policies are different from that of other
vehicles running on the first three lanes. Therefore, in this
study, we only focus on the first three lanes only, and all
selected trajectories are shown in Fig. 4b. To train the lane-
changing policy, we reconstructed the road section in the
simulator as shown in Fig. 4c, each with a lane width of 0.366
m.

(a) US-101 road segment

(b) The trajectories of 100 randomly selected vehi-
cles

(c) Simulated environment

Fig. 4: Illustration of US-101 road segment, data set and
reconstructed road structure.

Since our scaled car is 10 times smaller than real vehicles,
we need to scale the traffic data proportionally in order to
replay real traffic data for testing in the simulation environ-
ment. Considering that the speed limit of our scaled car during
training was set to 1.5 m/s (equivalent to 15 m/s in real
scenario), therefore, we remove all cases with vehicle speeds
above 15 m/s from the real traffic data. During the testing, if
the trained policy selects the same lane-changing action as the
human driver in a given scenario, we consider that the driving
behavior of the current case is successfully modeled. Due to
the presence of noise in the original data, the trajectories of
surrounding vehicles are fitted by a fifth-order polynomial, as
introduced in section III. To obtain the boundary conditions
for generating the trajectories of surrounding vehicles, we can
directly scale the speed and distance in real traffic data by
the ratio of the vehicle size λ (λ = 10 in our case). In this
work, the duration required for a vehicle to complete a lane
change in the scenario remains consistent with real traffic data.
Assuming that the initial and final time of the lane-changing
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in the real traffic data are t0 and tn, the testing duration for
each scenario is denoted by

∆t = tn − t0 (7)

The position and speed information of vehicles in real traffic
dataset can be expressed as p̃i(t) =

(
p̃ix(t), p̃

i
y(t)

)
and

ṽi(t) =
(
ṽix(t), ṽ

i
y(t)

)
. i is the vehicle number. i = 0 indicates

a lane-changing vehicle. The boundary conditions including
position and speed of vehiles in simulated environment can
be calculated by(

pix(t), p
i
y(t)

)
=

1

λ

(
p̃ix(t), p̃

i
y(t)

)
(8)

and (
vix(t), v

i
y(t)

)
=

1

λ

(
ṽix(t), ṽ

i
y(t)

)
(9)

VI. IMPLEMENTATION RESULTS

A. Robustness Analysis of Car-Following Policy

To evaluate the performance of the car-following policy,
we compared it with 3 human players. In each group of
comparisons, human players control the speed of the car using
a joystick, and the trained policy was also tested in the same
traffic scenarios. All human players and the trained policy use
the same observation information to ensure the fairness of the
comparison. Human drivers watch the speed information of
the controlled car as well as the point cloud data detected by
the LiDAR to obtain the position information of the vehicle
in front (For example, if the intervehicle distance is out of
the maximum detection range, players cannot observe the
point cloud information of the front vehicle in the simulator).
In each group of tests, we considered 30 cases where the
leading vehicle, in the beginning, is located in the unsafe zone
(gap<1.5 m), the interaction zone (1.5 m< gap <2.7 m), and
the safe zone (gap>2.7 m) of the controlled vehicle respec-
tively. The maximum speed limit of the leading vehicle is set
to change within the range of [0.5, 1.5] m/s. In each episode,
the simulator will randomly select a pair of parameters (initial
distance, max speed) from list D = [0.8, 1.0, 1.25, 1.4, 1.5,
2, 2.25, 2.7, 2.9, 3.0] m and list v= [1.0, 0.75, 1.2] m/s. The
evaluation includes safety, comfort, and energy consumption.
The last two factors are reflected by the change of the vehicle’s
acceleration. To save fuel consumption, drivers usually try
to use minimum effort to achieve the desired behaviors.
In other words, the less often the driver uses deceleration
actions, the better. The order of each action with respect to
comfort is as follows: maintain the current speed>acceleration
(or deceleration)>hard acceleration (or hard deceleration). In
order to improve safety, the car following policy needs to be
able to maintain a stable distance from the leading vehicle and
maintain a relative speed of around 0 with it.

During the test, we use the reward function defined in sec-
tion II to score the driving behaviors. The action frequency is
16 Hz, and the maximum number of steps is 300. We counted
the average score for each group of tests, the probability of
violating the unsafe zone, the distance between the ego car
and the leader, and the speed difference separately. Table
III shows that the trained car-following policy outperforms

human players in the above aspects. To understand why the
trained policy scored high, we analyzed the recorded data
further. We selected three representative sets of comparative
data respectively, as shown in Fig. 5. In Fig. 5a, the initial
distance is 1.0 m, and the maximum speed of the leader is 1.25
m/s. Both the RL policy and player 1 choose to maintain the
current speed of 0 to avoid collision with the leader. Compared
to the performance of player 1, the trained policy can adjust
actions quicker to maintain a stable distance and to get a
smaller speed difference with the leader. From the speed curve,
we can find that player 1 focuses more on comfort, and the
RL policy is more on travel efficiency. In Fig. 5b, the leader
is out of the LiDAR detection range at the beginning, and
both the RL policy and player 2 choose to accelerate. As the
distance decreases, the leader begins to enter the detection
range of the LiDAR. However, player 2 cannot take actions
as quickly and effectively as the RL policy to maintain a safe
interactive distance with the leader. Finally, the car controlled
by player 2 enters the unsafe area, thereby increasing the risk
of collision with the leader. According to Fig. 5c, we can
see that both the RL policy and player 3 can effectively take
actions to maintain a safe interaction distance with the leader,
and take as few ‘deceleration’ actions as possible to save
energy consumption. To compare the robustness of different
driving behaviors during testing, we performed a statistical
analysis of the recorded data. From Fig. 6a, we can see that
compared to the other three human players, the RL policy
uses more “maintain” actions and uses less “deceleration”
action to reduce energy consumption. Fig. 6b shows that the
average distance between the ego vehicle and the leader is
2.06 m and the fluctuation range is 1.2 m smaller than other
three groups of tests. According to Fig. 6c, the average score
of the RL policy in the 30 groups of tests is -235.54, and
the fluctuation of the scores is significantly smaller than that
of human players which proves that the trained car-follow
policy is more robust. Although the discrete actions adopted
in this paper is different from the continuous action space
in real world, we can conclude from the above comparison
that the learning-based driving policy can perform the same or
even better than human drivers on some specific driving tasks.
Unlike human drivers, the machine will not be fatigued due
to repetitive tasks which leads to unsafe-driving in humans.

TABLE III: Comparison with Human Players

Policy Rewards Unsafe rate ∆d (m) ∆v (m/s)

RL policy -235.54 0.0% 2.06 0.105
Player 1 -427.08 6.7% 2.51 0.248
Player 2 -488.31 63.3% 1.82 0.238
Player 3 -408.13 3.3% 2.23 0.257

B. Training Results

To maintain the conciseness of the paper, we demonstrate
the results of utilizing our DRQfD framework to enhance
the training efficiency of the RL algorithm for the high-level
policy. we also compare it with vanilla D3QN PER and IL
Guidance policy, as shown in Fig. 7. The red dashed line in
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Fig. 5: Comparison of learned policy with human players on features of intervehicle distance, relative speed and actions: (a)
learned policy vs. player 1 (unsafe zone) with 1.25 m/s speed limit of the leader car; (b) learned policy vs. player 2 (safe
zone) with 1.0 m/s speed limit of the leader car; (c) learned policy vs. player 3 (interaction zone) with 0.75 m/s speed limit
of the leader.
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Fig. 6: Comparison of driving preference and robustness of different policies (a) action distribution of different policies; (b)
Head-way space distribution of different policies; (c) Score distribution of different policies.

the figure represents the performance of the Guidance policy
trained by the IL algorithm on a small dataset, which is used to
guide RL training. Due to the small data size, Guidance policy
falls into a local minimum of choosing the car following policy
most of the time. On average, IL Guidance policy obtains an
accumulated reward of around 2.75/episode, demonstrating a
lower travel efficiency. The blue curve represents the training
process using the DRQfD framework. We can see that the
proposed framework can effectively help the RL algorithm to
converge quickly to the optimal policy level, saving about 30%
of training episodes. The yellow line represents the training
curve of the vanilla D3RQN PER algorithm. We cut off the
training curve at the termination of the DRQfD training. How-
ever, as the number of training episodes increases, we found
that the vanilla D3RQN PER algorithm can also converge
to the level of the DRQfD algorithm. Therefore, we can
conclude that the pre-trained RL network and the IL Guidance

policy trained on a small amount of expert demonstration can
effectively help to improve the learning efficiency of RL. In
the next section, we will compare the RL policy with the IL
and human player policies in randomly generated scenarios.

Fig. 7: Training processes of different learning methods in the
lane change scenarios.
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TABLE IV: Baseline Comparison Results

Methods Collision ∆d vavg (m/s) Invalid a

Human Player 5% 42.5 0.85 0.03%
DRQfD 7% 44.5 0.89 0.27%
IL Baseline 20% 38.5 0.77 1.06%
IL Guidance 13% 36.0 0.72 0.88%

C. Comparison with Imitation Learning

Since the vanilla D3QN PER and our DRQfD algorithms
eventually converge to the same level, for the sake of sim-
plicity, we only select one model to represent the RL policy.
We compare the performance of RL policy with a human
player, IL Guidance policy, and IL Baseline policy in the same
scenarios. We evaluate the driving safety of each policy based
on the collision rate. The driving distance and average speed
are used to evaluate the traffic efficiency. Invalid action rate
is the proportion of the total number of actions taken by the
ego vehicle during the entire testing, in which either the ego
changed lanes despite no vehicles being present in front of
it, or the lane-changing action caused the ego to leave the
road. To provide consistent observation information for the
human player and other trained policies, similar to the car-
following scenario introduced earlier, we only provided the
human player with the visualized point cloud of surrounding
vehicles through RViz, without displaying information about
vehicles out of the LiDAR detection range. The test results
are shown in Table IV. The human player has lower collision
rate and invalid action rate than all trained policies, indicating
ideal driving behavior. Although the RL policy has slightly
higher values than the human driving policy in these two
metrics, it is significantly better than the IL policy. This result
is reasonable, as even though we provided the IL policy with
the same amount of data as the RL training, the demonstration
data only includes successful driving scenarios. It may not
generalize well to new and unseen scenarios during testing. We
also analyzed the reasons why human players had collisions.
This was mainly due to the fact that in order to be compatible
with the size of the indoor validation environment, we set the
detection range of LiDAR to 2.7m. Therefore, all collision
scenarios of human players occurred when there were no
displayed vehicles in front of the target lane before the lane
change. However, when the human drivers choose to change
lanes to get a higher speed, vehicles suddenly appeared in
front of the ego in the target lane, leading to collisions. The
above reasons also apply to other learning-based policies that
experienced collisions in the same scenarios. This problem
can be solved by increasing the maximum detection range of
the LiDAR. Regarding the evaluation of driving efficiency,
we found that the RL policy performed the best in terms
of driving efficiency, with an average driving speed of 0.89
m/s, higher than the other driving policies. Additionally, this
speed was higher than the maximum driving speed setting of
surrounding vehicles (0.8 m/s), indicating that the RL policy
can effectively take lane-changing actions to improve driving
speed. To evaluate the similarity between different learning-
based policies and human driving behavior, Fig. 8 shows the

action distribution of each driving policy in the same 100
test scenarios. Overall, the RL policy is closest to human
driving behavior with a slightly higher proportion of lane-
changing actions than human players, which explains why RL
achieves higher travel efficiency. However, based on Fig. 8 and
Table IV, we can see that the generalization ability of the IL
Baseline policy is unsatisfactory, showing a higher collision
rate and invalid action rate. The red bar represents the IL
Guidance policy used to guide RL early exploration. Due to
the small amount of data, IL Guidance policy falls into a local
minimum of choosing car-following policy most of the time.
The proportion of lane-changing actions taken by IL Guidance
policy is significantly lower than that of the other policies. We
can conclude that our RL-driven policy outperforms IL-based
policy in terms of driving safety, travel efficiency, and human
likeness.

Fig. 8: Distribution of high-level actions.

D. Test Results in Real Traffic Data

According to the previous section, we demonstrated that the
RL policy outperforms the IL policy. In this section, we aim
to validate whether the RL policy can choose lane-changing
actions consistent with human drivers in the given scenarios.
The primary factors considered by a vehicle during lane-
changing decision-making involve relational attributes such as
position and speed relative to other vehicles in the surrounding
environment. As explained in Section IV-C, we scaled the
boundary conditions of surrounding vehicles based on real
traffic data to generate trajectories for replaying in the testing
environments. After testing 100 lane-changing scenarios, the
modeling success rate under the scaled speed settings is above
81%. The remaining cases, which involve collision or not
selecting a lane-changing action, are considered as modeling
failures. Here, we take three cases from the 100 testing
scenarios as examples to demonstrate the driving performance
of the trained policy. The position and speed information of
surrounding vehicles as well as the testing duration for each
case are shown in Table V.

Taking vehicle 953 as first example, the first two values of
each set of data in the second row of Table V indicate the
initial and final scale positions of surrounding vehicles. From
Fig. 9a, we can see that 959 (blue), 950 (cyan), 945 (red) are
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TABLE V: Boundary Conditions of Surrounding Vehicles

(p1y , p
′1
y , v1y , v

′1
y ) (p2y , p

′2
y , v2y , v

′2
y ) (p3y , p

′3
y , v3y , v

′3
y ) (p4y , p

′4
y , v4y , v

′4
y ) ( p5y , p

′5
y , v5y , v

′5
y ) ∆t

Ego IDs = 953, (p0y , v
0
y) = (11.31, 1.25); Surroundings = 959, 950, 945, 966, 957

(12.27, 21.45, 1.22, 0.91) (13.62, 23.29, 1.07, 1.07) (14.67, 24.87, 1.39, 0.90) (10.18, 20.05, 1.24, 1.06) (10.93, 21.14, 1.11, 1.11) 8.6

Ego IDs = 1054, (p0y , v
0
y) = (17.10, 0.47); Surroundings =1053, 1049, 1061, 1058, 1056

(18.24, 22.64, 0.31, 0.92) (18.22, 24.17, 0.69, 1.09) (17.93, 20.35, 0.35, 0.69) (17.02, 20.08, 0.15, 0.76) (15.77, 20.97, 0.56, 0.91) 6.9

Ego IDs = 2610, (p0y , v
0
y) = (12.90, 0.92); Surroundings = 2603, 2608, 2605, 2621, 2612

(14.66, 20.15, 1.21, 1.20) (14.17, 19.57, 0.93, 1.06) (14.47, 20.30, 1.07, 1.22) (10.64, 15.11, 0.74, 0.93) (12.56, 18.39, 1.06, 1.19) 5.2

Note: boundary conditions of vehicle i: (piy , p
′i
y , viy , v

′i
y ) = (Init. pos., Final pos., Init. speed, Final speed); Testing duration: ∆t.

(a) Real traffic data (ID: 953) (b) Test results of 953 on scaled data

(c) Real traffic data (ID:1054) (d) Test results of 1054 on scaled data

(e) Real traffic data (ID:2610) (f) Test results of 1054 on scaled data

Fig. 9: Comparing driving behavior of RL policy with human driver policy under simulated environment: (a), (c), (d) The
trajectory and velocity information extracted from US101 with lane-changing vehicle of 953, 1054, and 2610; (b), (d), (f) are
the testing results of RL policy with replaying the trajectories of surrounding vehicles on scaled data.

the vehicles in front of the tested vehicle (953, black) at the
very beginning, of which the 945 (red) is the farthest from
the tested vehicle (black). The first values of the fourth and
fifth set of data in the second row of the table are smaller
than initial position of ego car (p0y = 11.31 m), indicating
that 966 (yellow) and 957 (green) are the vehicles behind
the tested vehicle (black). The last two values of each set
of data in the table are the initial and final scale speeds of
surrounding vehicles. We can see that the initial speed of the
vehicle 950 (cyan) ahead of tested vehicle in the current lane
and the rear vehicle 957 (green) in the target lane are smaller
than the initial speed of tested vehicle (v0y = 1.25), indicating
that their current speeds are lower than the ego vehicle speed

while the current speed of vehicle 945 (red) in the target lane
is faster than the tested vehicle. The trajectories and speeds
of surrounding vehicles extracted from real traffic data for
case 1 are shown in Fig. 9a. Fig. 9b shows the testing result
in the simulated environment, and we can find that speed
profiles of surrounding vehicles in the simulated environment
have the same trend as the real traffic data. The ego vehicle
chooses to change the lane to the right similar to the decision
made by human driver. Therefore, the driving behavior in this
scene is considered to be successfully modeled. Similarly, the
other two examples are about real scenarios where the tested
vehicles change lane to the left from the middle lane and the
bottom lane respectively as show in Fig. 9c and 9e. Tested
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(a) (b)

(c)

Fig. 10: Testing results of the hardware implement in different scenarios (a) Changing the lane to the left from lane 3; (b)
Changing the lane to the left from lane 2; (c) Changing the lane to the right from lane 2.

vehicles all made decisions to change the lane same as human
drivers as shown in Fig. 9d and Fig. 9f. It should be noted
that the reward function designed for high-level policy focuses
more on driving safety and travel efficiency under different
driving conditions rather than fitting the true trajectories of
lane-changing vehicles, therefore, we have excluded the speed
curve of tested vehicles from test results to avoid confusion.
More details about tests can be found in video 1.

E. Hardware Implementation

To verify the performance of sim2real transfer, in this
section, we select three scenarios with four cars to show the
lane-changing behavior in real world. Both the car-following
model and the lane-changing model are loaded to the cars
and conducted continuous testing for 5 hours. The size of the
physical car and the virtual car in the simulator are completely
identical. Each car is equipped with an Nvidia Jetson-TX2
GPU and a 2D LiDAR. The decision frequency is 15 Hz and
the control frequency is 100 Hz. Although there are only four
physical cars available for use, we select the testing scenarios
where the surrounding vehicles can directly influence decision-
making made by the ego car. The surrounding vehicles are
set to execute the trained car-following policy only during
testing, and the ego car adopts the complete policy proposed
in this paper. To facilitate continuous testing, we designed an
elliptical three-lane scene as shown in Fig. 10 where the outer
lane is lane 3 and the inner lane is lane 1. All cars move
counter-clockwise. We use motion capture system to get the
ground truth of positions and velocities. From Fig. 10a, we
can see that the ego car is currently in the lane 3 where the
speed of car 1 (yellow) in front is lower than the speed of car
3 (red) in the target lane. And the gap between car 2 (blue)

1Video of our experiment results can be viewed at https://youtu.be/
Svp2S1OaSB8

and car 3 (red) in the target lane is safe enough for the ego car
to complete lane-changing. According to Fig. 10b, the ego car
is in the lane 2 while the speed of car 3 (red) in the current
lane is the slowest. In addition, car 1 (yellow) in the left lane
is faster and farther away from the ego car than car 2 (blue)
in the lane 3, therefore, the ego car chooses to overtake car 3
(red) from lane 1 in this case. From Fig. 10c, the ego car is
in the lane 2, and the gap between car 3 (red) in the lane 1
and car 2 (blue) in the current lane of the ego car is smaller
than that of car 1 (yellow) in the lane 3. Therefore, the ego
car chooses to overtake the car 2 (blue) in front from lane 3.
Check out the video for more test scenarios.

From the above examples, we can see that the policies
learned from simulator can be directly used on the hardware.
The performance of the ego car in the real scene is consistent
with the driving behavior in the simulated environment, which
proves the feasibility of the method proposed in this paper.

VII. CONCLUSIONS

In this work, we systematically studied the application of a
DRL method in lane-changing scenarios from three aspects:
learning efficiency, partial observability, and sim2real transfer.
Specifically, we first propose a new DQRfD algorithm, which
has three advantages: (i) improving the learning efficiency of
RL; (ii) improving the generalization ability of IL; (iii) solving
the POMDP problem in decision-making of AD through the
LSTM network, thereby stabilizing the training process. Sec-
ondly, a hierarchical decision-making framework training car-
following policy and high-level policy separately in an end-to-
end manner is proposed to address the multi-objective problem
in lane-changing scenarios. Third, to validate the effectiveness
of our method, we build a high-fidelity simulation platform
based on ROS-Gazebo for training and evaluating of different
driving policies. According to the testing results in car follow-
ing scenarios, the RL-driven policy is capable of performing as
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well as or even better than human drivers in safety and energy
consumption. Regarding the high-level lane-changing policy,
we compared our DQRfD method with a pure RL method
showing about 30% improvement in learning efficiency. Qual-
itative and quantitative comparisons between our model and
IL baseline are also conducted. The experimental results show
that our proposed method outperforms IL in terms of safety,
travel efficiency, and human likeness. To further validate the
generalization ability of our model, we test the model on real
traffic data, demonstrating a successful modeling rate of 81%.
Finally, we load the trained model onto our hardware platform
for evaluation, which exhibits consistent behaviors with the
simulation. As a result, the overall decision-making framework
proposed in this work exhibits great potential to enhance the
practical application of RL-driven HAD.
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Self-Driving Cars at Unsignalized Intersections
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Abstract—Sharing the road with human drivers requires
autonomous vehicles to account for interactions between
them. To resolve traffic conflicts in unsignalized intersec-
tions, a robust adaptive game-theoretic decision-making al-
gorithm with scalability is proposed based on the receding
horizon optimization, level-k game theory, and switching
directed graph. A mismatch between the inherent (k-1)
assumption of level-k theory and actual driver type may
lead to unsafe action selection and reduce driving safety. To
handle this problem, in this work, an autonomous vehicle
would predict the driver types of surrounding vehicles
based on historical interactive behaviors between them and
utilize its trust in the driver types to achieve an adaptive
driving strategy. Besides, switching interaction graph is
incorporated into an adaptive level-k framework for the first
time, so as to cut off the connection between ego vehicle
and nearby vehicles that do not affect driving behavior of
the former, contributing to reducing the computing com-
plexity. The feasibility, effectiveness, and real-time imple-
mentation of the proposed method are validated on both
hardware and ROS-Gazebo platform.

Index Terms—Scalable adaptive control, level-k game
theory, driving aggressiveness, multi-vehicle interaction.

I. INTRODUCTION

THE decision-making module is crucial for safe and
efficient driving in autonomous vehicles (AVs). However,

AVs face significant challenges in coexisting with human-
driven vehicles (HDVs) and making fast and optimal driv-
ing decisions in complex and unknown traffic environments
with only partial observations [1]. Designing robust, optimal,
and computationally efficient decision-making algorithms has
become a research hotspot, particularly for unsignalized inter-
sections, which are more challenging for both HDVs and AVs
due to complex vehicle interactions.

The most crucial task of advanced decision-making systems
is to avoid collisions. There are four main categories of
collision avoidance methods (CA): motion planning-based,
risk assessment-based, game-theoretic-based, and learning-
based (supervised and reinforcement learning). Studies have
been conducted in each category [2]. Motion planning methods
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are commonly used to solve CA problems [3], but their
application can be limited because the CA constraints they rely
on are typically non-linear and non-convex. This can make the
problem NP-hard [4].

Two methods for risk assessment have been developed,
namely the deterministic approach and the probabilistic ap-
proach. The deterministic approach predicts whether a colli-
sion will occur or not by using a pre-determined threshold of
specific indicators such as time headway or time to collision
[5]. Although this approach has a low computational burden, it
is not effective in more complex scenarios and does not model
input data uncertainties. On the other hand, the probabilistic
approach [6] uses empirical criteria as safety thresholds, limit-
ing its adaptiveness in different traffic scenarios and leading to
over-conservative actions. This study introduced a driver-type
assessment model based on game theory and integrated it into
the decision-making framework for AVs on structured roads.
It overcomes the above-mentioned problems by considering
multiple safety metrics and drivers’ driving style preferences
for effective and efficient CA.

Game theory is a promising method to make strategic
decisions for AVs in mixed traffic scenarios. Previous studies
have used Nash equilibrium [7], [8], Stackelberg game, and
differential game approaches [9] to model driving conflicts,
controller design [10], and interaction behaviors of vehicles
at different traffic scenes. However, in this study, the level-k
game theory approach is used to formulate vehicle interactions
as a dynamic game. This method considers the observation of
surrounding cars, predicts their actions, and finds the optimal
response, which differs from previous works as it breaks down
the Nash-equilibrium rational-expectations logic and assumes
that drivers regard others as less sophisticated than themselves.
There have been numerous previous works in the field of AV
control at intersections, which have utilized a combination
of level-k game theory and receding horizon control. For
instance, in [11], a multi-vehicle interaction model was pro-
posed to address driving conflicts at unsignalized intersections,
but only two-car interactions were considered due to com-
putational limitations. To mitigate the computational burden
associated with estimating driver types and predicting future
actions of other vehicles, pure learning based approaches
[6] and a combination of level-k theory and learning-based
methods [12]–[14] have been proposed.

These approaches move works of driver-type estimation
and behavior prediction to offline training and use a trained
model online to reduce running time of algorithms. In [13],
an explicit online implementation scheme was proposed that
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uses function approximation techniques to avoid optimization
problems in real-time. In [14], the algorithm was extended
to different intersection shapes, and an imitation learning-
based algorithm for level-k control policies was proposed.
End-to-end algorithms were also designed to map relation-
ships between observations and vehicle operations [12], [15],
showing improvements in real-time performance and flexibil-
ity for multi-vehicle scenarios. However, uncertainties from
simplified kinematic models and unknown driving preferences
were not considered in these works, potentially reducing AV
safety. [16] proposes a method to accurately predict lane-
changing behaviors in complex transportation environments
by integrating driving environments and drivers’ cognitive
processes using a fuzzy inference system and long short-
term memory neural network. But, performance is limited by
the quality of training data, and the learning-based method
lacks interpretability. In this work, uncertainties are treated
as disturbances and included in the driving model. The AV
assumes that surrounding interactive vehicles are aggressive
drivers, resulting in more conservative driving behavior in the
absence of interaction data. As the AV’s trust in the driving
type of surrounding vehicles increases during interactions, the
driving strategy is constantly adjusted. Previous research has
considered AV driving uncertainty in highway situations [17],
but few studies have explored intersections without traffic
lights. To the best of our knowledge, there has been insuf-
ficient research on reducing the computational complexity of
decision-making algorithms while maintaining interpretability,
based on level-k game theory.

Our approach differs from existing works in the following
ways: (1) An adaptive decision-making algorithm is designed
using receding horizon optimization, level-k game theory,
and directed switching graph to address interactions between
AV and vehicles with varying driving preferences in com-
plex unsignalized intersections. (2) By utilizing the switching
interaction graph, AVs can establish instantaneous interac-
tive connections with other vehicles, allowing them to adapt
their decision-making strategies to complex traffic situations,
which effectively addresses the challenges of computational
complexity and scalability faced by previous level-k based
algorithms. (3) The proposed adaptive strategy adjusts the
size of anticipated disturbances based on the aggressiveness
of other interacting vehicles, which provides a ’balanced’
control action for the AV that is safer than aggressive strategies
while also being more efficient than conservative strategies; (4)
Compared to previous studies, we have created a high-fidelity
simulator using ROS-gazebo for unsignalized intersections.
This simulation environment is capable of evaluating decision-
making algorithms in terms of scalability, multi-vehicle inter-
action, interpretability, and real-time implementation.

The rest of this paper is organized as follows. In Section II,
the problem formulation is presented. Section III introduces
kinematic model with pure pursuit controller. Section IV
describes the details about a scalable adaptive game-theoretic
decision-making framework. Hardware and simulation results
are provided in Section V to show the effectiveness of pro-
posed method. Section VI concludes this paper.

Fig. 1: Unsignalized Intersection Scenario

II. PROBLEM FORMULATION

There are 12 possible paths for AVs at a four-way single-
lane unsignalized intersection as shown in Fig. 1. One vehicle
is chosen as the ego vehicle and the others are classified as op-
ponent vehicles with different reasoning levels. Following [9],
we define the roles of AVs and potential traffic conflicts. Each
vehicle is seen as an independent decision-maker and can be
divided into four categories based on their potential conflicts:
Host vehicles (HV), leading vehicle (LV), interactive vehicle
(IV), and other vehicles (OV). At an unsignalized intersection,
there are three types of driving conflicts determined by the
moving trajectories and speeds of AVs.

• Following Conflict arises when a HV is traveling on the
same path as a LV at a higher speed.

• Confluence Conflict occurs when two vehicles traveling
on different paths merge into the same lane. If an IV
passes the collision point before HV, the Confluence
Conflict becomes a Following Conflict.

• Cross Conflict happens when two vehicles traveling on
different paths with an intersection point are heading in
different directions

The collision points highlighted in Fig. 1 demonstrate traffic
conflicts faced by AVs at intersections. Interactions among
AVs are depicted through a switching directed graph, which
will be further explained later. To define the Laplacian matrix
of the graph, we refer to the AV experiencing Confluence
Conflicts or Cross Conflicts with the HV as an IV. Vehicles
that do not impact the actions taken by HVs are considered
as OVs. The designations of LV, IV, and OV are subject to
change according to the traffic states of AVs in real time.

To resolve the traffic conflicts of AVs at unsignalized
intersections, we propose a scalable adaptive game-theoretic
decision-making framework, which consists of two modules,
i.e., modeling, and decision-making, as illustrated in Fig. 2.
First, the interaction topology of HV is established according
to the traffic states obtained from perception system. Since the
driving aggressiveness of IV has significant effects on their
driving behaviors, HV must account for the driver type of IV
during the decision-making process. Specifically, HV uses the
kinematic model to predict the future actions of IV based on
the level-k game theory following a receding horizon strategy
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to find its own optimal actions. Then, HV’s belief on the driver
type of IV is updated by comparing the actual actions taken
by IV and corresponding predictions made by HV. Finally, the
generated speed command will be executed by the controllers.
In this work, PID and pure pursuit controllers are used to
achieve the longitudinal and lateral control, respectively.

III. VEHICLE DYNAMIC MODEL
Kinematic bicycle model is commonly used to design

decision-making algorithms for AVs [17] denoted by Eq. (1):

x(t+ 1) = x(t) + v(t) cos(ψ(t) + β(t))∆t+ ux(t) (1a)
y(t+ 1) = y(t) + v(t) sin(ψ(t) + β(t))∆t+ uy(t) (1b)

ψ(t+ 1) = ψ(t) +
v(t)

lr
sin(β(t))∆t (1c)

v(t+ 1) = v(t) + a(t)∆t (1d)

β(t) = arctan

(
lr

lr + lf
tan (δ(t))

)
(1e)

δ(t) = arctan

(
2L sinα(t)

ld

)
(1f)

The pair of (x(t), y(t)) represents the center of gravity’s
coordinate position at time t, while v(t), ψ(t), and β(t)
denote the longitudinal speed, yaw angle, and angle of the
speed relative to the vehicle’s longitudinal axis, respectively.
a(t) represents the longitudinal acceleration. δ(t) denotes the
steering angle. The distances of vehicle’s center of mass
to the front and rear axles are denoted by lf and lr. To
account for uncertainties resulting from a simplified model
and unknown driving models, we use ux(t) and uy(t) to
represent the position uncertainties in both longitudinal and
lateral directions. ∆t represents the sampling period. Since
we focused on optimizing acceleration, control of lateral
movements have delegated to the pure pursuit controller by
incorporating Eq. (1f). The look-ahead distance, denoted as
ld, represents the distance between the vehicle’s rear axles
and a specified point on a desired path, which is calculated
using the parameter kvv(t). The angle between the vehicle’s
body heading and the look-ahead line, as defined by the center
of the rear axles and the target point, is known as α.

IV. SCALABLE DECISION-MAKING ALGORITHM
WITH LEVEL-K THEORY

A. Graph Theory Notions
The interactions among vehicles in the intersections are de-

noted by switching directed graphs. Let {Gk = (V, Ek,Wk =[
wk

ij

])
| k ∈ P

}
be the set of all possible graphs with

P = {1, · · · , Q} where Q > 1 is an integer. V =
{Car1, Ego, Car2, · · · , CarN} is a set of N + 1 nodes in
Gk and Ek ⊂ V × V represents the set of edges. Wk =

[
wk

ij

]
denotes the weighted adjacency matrix, where wk

ij is the
weight of the directed edge (j, i) and wk

ij > 0 if (j, i) ∈ Ek;
wk

ij = 0 otherwise. Let wk
ii ≡ 0,∀i ∈ V . The Laplacian matrix

of Gk is defined as Lk = diag
{
∆k

1 , · · · ,∆k
N

}
−Wk, where

∆k
i =

∑N
j=1 w

k
ij is the in-degree of node i, i = 1, · · · , N [2].

Given any graph G, V(G), E(G), and L(G) are represented its
node set, edge set, and Laplacian matrix, respectively [18],
[19].

The topology of the interaction graph is updated in real
time according to the traffic conflicts defined in section II. A
sequence of waypoints representing the future path of HV at
time t intersects with that of another vehicle leading to a Cross
Conflict or a Confluence Conflict, such vehicle is classified as
an IV. The length of the future path of vehicle l is defined by

L (pt[l]) =

N̂−1∑
j=0

|p̂t+j+1 − p̂t+j |, (2)

where p̂t+j represents the coordinates of the next jth waypoint
starting from the center point of its rear axle. N̂ is the total
number of waypoints in its future path, pt[l], of vehicle l.

Then the edge between the HV and IV will be denoted by
a double arrow, which represents an interaction among them.
For the Following Conflict, the edge between HV and the
other vehicle will be denoted by a single arrow pointing to
the HV, which represents a collision avoidance task for HV
and no interaction among them. Taking Fig. 1 as an example,
in traditional level-k based decision-making algorithms, the
interaction topology between vehicles can be represented by
Fig. 3(a), which could limit the scalability and real-time
implementation of algorithms due to its strongly connected
property. However, some vehicles that do not affect the actions
taken by HV should be removed from the interaction graph for
reducing computational burden purposes. Switching directed
graph can help to effectively simplify the interactions between
vehicles as shown in Fig. 3(b) with solid edges. Therefore, the
ego only needs to account for Car 1 instead of all of them in
this case.
Remark 1: Set D̂[l] represents the group of vehicles for
which HV needs to account for their potential actions when
making decisions, while set Ô[l] includes the vehicles that pose
collision risk or are in a Following Conflict situation with HV.

B. Action Set and Running Reward for Decision-Making

To resolve driving conflicts, we assume that a vehicle
has a finite set of acceleration levels to choose to adjust
its speeds along the desired path at each time step, i.e.,
a(t) ∈ A =

{
a1, · · · , aM

}
,∀t. The acceleration to be

applied to the vehicle at each step is decided according to
the optimization of a reward function described as follows.

The cumulative reward is given by

R (γt) =

N−1∑
j=0

λjRt+j . (3)

An optimal action sequence of HV with prediction horizon
N , γ∗t =

{
a∗t , a

∗
t+1, · · · , a∗t+N−1

}
, can be obtained by maxi-

mizing above cumulative reward given by Eq. (3) following a
receding horizon strategy. Since the HV only executes the first
element of the action sequence at each time step, and repeats
for every control cycle, it provides a certain degree of inherent
robustness to uncertainties because of the feedback loop [20].
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Fig. 2: Game-Theoretic Decision-Making Framework

Fig. 3: Interaction Graph: (a) Undirected Graph (Strongly
connected); (b) Directed Graph

The stage reward is defined as:

Rt+j = w1ϕ
(1)
t+j +w2ϕ

(2)
t+j +w3ϕ

(3)
t+j +w4ϕ

(4)
t+j +w5ϕ

(5)
t+j (4)

where ϕ
(k)
t+j is kth indicator variable for a specific driving

feature at prediction step j. ωk > 0 is the weight of the
corresponding factor. More features could be added to Eq.
(4) for more driving preferences of HV.

There are four approximations of vehicle perceptions, i.e.,
Collision zone (Cz), Safe zone (Sz), Uncertainty zone (Uz),
and the length of future path (L (p)), which will be used to
define the reward function. Cz is red dashed rectangular with
the length of lv m and the width of wv m; the Sz is yellow
dashed rectangular with the length of (lv+2sx) m and the width
of (wv+2sy) m; Uz is blue dashed rectangular with the length
of (lv+2sx+2ux) m and the width of (wv+2sy+2uy) m, in
which sx, sy, ux, uy ≥ 0, as shown in Fig. 1.

According to the observations defined above, driving fea-
tures of the reward function are characterized by:

• Interaction Status determined by the Cross/Confluence
Conflict between HV and IV. If intersection of their future
paths is detected ϕ(1)t = Jttc; and 0 otherwise.

ϕ
(1)
t =

n∑
i=1

{
−Jttc, pt[l] ∩ pt[i],∀i ∈ D̂[l]
0, otherwise

(5)

Jttc = 1/
((

∆T(i,l)
)2

+ ε
)
; ∆T(i,l) = Tĉ[l]− Tĉ[i]

Tĉ[l] = ∆sĉ[l]/vl;Tĉ[i] = ∆sĉ[i]/vi
(6)

where pt[i] represents the sequence of waypoints of the
ith vehicle at time t. And the HV is denoted by l. We
assume that the cross point between future paths is ĉ.
The time for vehicle l and vehicle i to reach the cross
point ĉ at current velocity from their current positions can
be expressed as Tĉ[l] and Tĉ[i], respectively. The closer

∆T(i,l) is to zero, the greater the risk of collision between
them.

• Collision status: If an overlap, representing a vehicle
collision, between the Cz of HV and that of any other
cars is detected then ϕ(2)t = -1; and 0 otherwise.

ϕ
(2)
t =

n∑
i=1

{
−1, Ct[l] ∩ Ct[i],∀i ∈ Ô[l]
0, otherwise

(7)

• Safe zone violation status: If an overlap between the Sz

of HV and that of any other cars is detected then ϕ(3)t =
-1; and 0 otherwise.

ϕ
(3)
t =

n∑
i=1

{
−1, St[l] ∩ St[i],∀i ∈ Ô[l]
0, otherwise

(8)

• Uncertainty zone violation status: If an overlap between
the Uz of HV and that of any other cars is detected then
ϕ
(4)
t = -1; and 0 otherwise.

ϕ
(4)
t =

n∑
i=1

{
−1, Ut[l] ∩ Ut[i],∀i ∈ Ô[l]
0, otherwise

(9)

• Travel efficiency: ϕ(5)t is to encourage vehicles to pass
the intersection efficiently, which is described by

ϕ
(5)
t = −

∣∣vt − vref
∣∣ (10)

where reference speed vref is typically chosen as the
legislated speed limit of the traffic scenario.

The calibration of model-based controllers is challenging
[17], however, intuitively, we prioritize driving safely over
travel efficiency when tuning the weights of these factors in the
reward function. Therefore, the tuning parameters are chosen
as,

w2 > w3, w4 > w1 > w5 (11)

C. Robust Adaptive Game-Theoretic Decision-Making

1) Level-k Decision-Making: To model multi-vehicle inter-
actions, all driving features except ϕ(5) in the stage reward
function (4) are utilized to reveal the interactive behaviors,
depending on the states of vehicles. A sequence of action of a
HV is represented by γt[l]. The action sequence of ith IVs with
reasoning deepth ’k’ predicted by HV is denoted by γ

(k)
t [i].

These actions are used to calculate the cumulated reward in Eq.
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(4) according to the corresponding traffic states at prediction
steps j ∈ Z[0,N−1], denoted by

st+j =[xt+j [1], yt+j [1], ψt+j [1], vt+j [1],

· · · , xt+j [n], yt+j [n], ψt+j [n], vt+j [n]]
T
.

(12)

Remark 2: It should be noted that st+j is the state information
of selected vehicles, represented by the Lσ(t) of interaction
graph in the set of O[l] = D̂[l]⊕ Ô[l], that affect the action of
HV instead of accounting for interactions among all vehicles
in the unsignalized intersections.

Inspired by skilled human drivers (HDs), they could navi-
gate complex unsignalized intersections effectively due to: (1)
driving difficulty being dependent on the number of interacting
vehicles rather than the total number present; (2) prioritization
of driving tasks based on conflict types with surrounding vehi-
cles; and (3) personalized driving preferences that experienced
HDs utilize to estimate and predict others’ behaviors, leading
to optimal actions for safety and efficiency.

The level-k theory adopted in this paper exactly works in
the way mentioned above. Specifically, level-‘k’ represents the
reasoning level of decision-makers starting from non-strategic
policy, level-0, that usually takes action to achieve its goal
without accounting for the interactions between itself and other
agents. However, decision-makers above this level of reasoning
will assume that all the other agents are level-(k-1). They
will predict the future actions taken by IV based on such an
assumption and take their own optimal actions accordingly.

In this paper, level-0 HV, representing an aggressive driver,
mainly behaves as a collision avoidance strategy in static
environments with a shorter length of future path and zero
uncertainty to others. A level-1 HV will assume that all IVs
are drivers with level-0 reasoning, therefore, responds to them
cautiously. The length of its future path and the size of the
uncertainty zone around IVs will always be the maximum
values from the perspective of HV. Similarly, more higher
levels can be defined. In this work, only level-0 and level-
1 drivers are considered due to the similarity between level-0
and level-2 [11], [17]. However, this algorithm can be extended
to higher levels at the expense of increased computational
complexity. Once the level-0 is defined, the action calculation
for finding level-k action, k ≥ 1, in the case of N-vehicle
interactions is represented by the following form:

R
(k)
t+j [l] = Rt+j

(
γ
(k)
t+j [l] | s0, γ

(k)
t [l], γ

(k)
t+1[l], · · · , γ

(k)
t+j−1[l],

γ
(k−1)
t [i], γ

(k−1)
t+1 [i], · · · , γ(k−1)

t+j−1[i]
)
i ∈ D̂[l],

(13)
and its cumulative reward is

R(k)
(
γ
(k)
t [l]

)
=

N−1∑
j=0

λjR
(k)
t+j [l] (14)

2) Robust Adaptive Decison-Making: The assumption that
level-k HV always interacts with IVs with level-(k-1) reason-
ing level is unrealistic. Mismatch between the (k-1) assump-
tion and actual driver type may lead to unsafe action selection
and reduce the driving safety. Intuitively, the interactions
of level-k versus level-k could lead to unexpected driving

behavior, i.e., congestion or collision [12]. Inspired by HDs,
HV should also be capable to assess the driver type of each
IV via interactions. The trust (or belief) of HV on the driving
model of each IV should also be updated in real time by
comparing the actual action applied by each IV, γ[i](t), and
corresponding predictions for a level-k driver, γ(k)t [i], made
by HV, which can be represented as a continuous parameter
between level-0 and level-1. The HV’s trust, TK=k∗

HV [i](t),
can be represented by a probability that the i-th IVs can be
modeled as model k driver, given by

k∗ = arg min
k∈{0,1}

∥∥∥γ[i](t)− γ
(k)
t [i]

∥∥∥ (15a)

T̃
(K=k∗)
HV [i]l(t) = T

(K=k∗)
HV [i](t− 1) + ∆P (15b)

T
(K=k)
HV [i](t) =

T̃
(K=k)
HV [i](t)∑1

k′=0 T̃
(K=k′)
HV [i](t)

,∀k ∈ {0, 1}, (15c)

where the rate of increment of the trust is denoted by
∆P , which is a positive constant. Since there may exist some
scenarios in which the actions taken by drivers are the same
regardless of the driver types, the probability of each driver
type remains the same. Otherwise, the HV’s trust in driver
model k∗ that matches the actual action best increases by
∆P . Then, the probability distribution is normalized by Eq.
(15c). An algorithm flowchart is provided to help illustrate
the decision-making process of above level-0, level-1, and
adaptive policies, see Fig. 4.

Fig. 4: Algorithm Flowchart

The adaptive decision-making approach proposed in this
paper is based on the multi-model strategy, it finds an optimal
action sequence for HV at each time step according to the
estimated driver model of each IV. The expected accumulated
reward of an action sequence is calculated by

RP (γt[l]) =

1∑
k=0

T
(K=k)
HV [i](t)R(k)

(
γ
(k)
t [l]

)
,∀i ∈ D[l]

(16)

This article has been accepted for publication in IEEE Transactions on Industrial Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIE.2023.3290255

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: York University. Downloaded on October 23,2023 at 03:08:25 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

To improve the robustness of the algorithm, two sources
of modeling errors are considered during the decision-making
process of HV. Specifically, a simplified kinematic model
could introduce the model uncertainty to the decision-making
process, which is denoted by u(m) = (u

(m)
x , u

(m)
y ) ∈ Um, and

unknown driver type could lead to an interaction uncertainty
denoted by u(d) = (u

(d)
x , u

(d)
y ) ∈ Ud. To deal with the

uncertainties from the simplified kinematic model, the safe
margin of the safety zone is used to compensate for the model
uncertainty, u(m), which is a mismatch in the position between
the actual position of IV and the corresponding prediction by
HV, the values of which will not be changed all the time.
The uncertainty zone of a vehicle is also a rectangle area
that subsumes the safe zone of the car with margins on both
longitudinal sides and lateral sides to handle the interaction
uncertainty. To realize the adaptive scheme, the size of it is
modified according to the HV’s trust in the driver type of each
IV. The uncertainty set could be denoted by

UHV [i](t) = Um ⊕ T
(K=0)
HV [i](t)Ud (17)

To ensure safety, the probability that the driver type of IV
can be modeled as level-0 is set to 1 initially in Eq.(15), which
is reasonable since HV should behave cautiously when it does
not have too much interaction data with IV at the beginning.

In addition, unlike the highway scene where cars are only
moving in the longitudinal direction, HV should be capable
to resolve lateral conflicts including Cross Conflict and Con-
fluence Conflict in unsignalized intersections, therefore, the
length of its future path should be modified according to the
value of Trust in the model of each IV as well, given by

L̂ (pt[l]) = L (pt[l])T
(K=0)
HV [i](t) (18)

The driving feature about interaction conflict status will be
calculated based on the length of it. To find the optimal action
sequence, γ̂[l], it essentially solves an optimization problem
by maximizing the expected cumulative reward 16, given by

γ̂t[l] = arg max
γt[l]∈A

min
ut+j∈Ul[i](t)

RP (γt[l])

s. t. ∀j ∈ Z0,N−1, [1a− 1f ],∀i ∈ O
(19)

A decision tree approach is used for searching an optimal
action sequence at each time step by enumerating all possible
combinations of discrete actions. Then, the first element of
γ̂t[l] is applied to the vehicle, and the cycle continues.

V. EXPERIMENTAL VALIDATION
To evaluate the performance of our algorithm in terms of

adaptability, computational complexity, real-time performance,
and scalability, we analyze test results on both hardware
platform and high-fidelity simulator, including switching inter-
action graph, travel efficiency, drivers’ type estimation, com-
putational load and its comparison with a traditional method.

A. Performance of Adaptive Policy on Hardware
To experimentally validate the effectiveness of the scalable

adaptive game-theoretic decision-making algorithm (Adpt.),
four AVs in indoor environment unsignalized intersection are

Fig. 5: Hardware Platform

utilized, see Fig. 5. Scaled model vehicles receive control com-
mands via Wi-Fi from a workstation with Intel(R) Core(TM)
i7-7700 CPU. An OptiTrack system consisting of 16 Flex 13
cameras is used to capture motion states of all cars and feed
them back to the workstation via USB cables.

TABLE I: Policy Setting at Unprotected Left Turn Scenarios

Case Car1 Ego Car2 Car3 Car4 Car5 Car6

1 L0(l) Adpt.(l) L0(l) L1(s) ∅ ∅ ∅
2 L0(l) Adpt.(l) L1(l) L1(s) ∅ ∅ ∅
3 L0(l) Adpt.(l) L1(l) L1(s) L0(l) L1(r) ∅
4 L0(l) Adpt.(l) L1(l) L0(r) L0(l) L1(r) L1(s)

Note: L0: level0; L1: level1; Turn left (l), right (r); straight (s).

Due to space limitations, unprotected left turn is chosen as
the primary testing scenario since it is the most challenging
case among intersection-related problems [21], where all vehi-
cles navigate intersections based on their local observation. In
each test, different driving strategies were assigned to vehicles
as shown in Table I, where the level-0 policy can be regarded
as an aggressive driver (Aggr.) while level-1 is a conservative
driver (Consrv.). These driving policies are unknown to each
other. Ego adopts the proposed adaptive driving policy that al-
lows it to navigate through an unsignalized intersection where
surrounding vehicles exhibit varying degrees of aggressive
driving behavior safely and efficiently via interaction. 1.

The decision-making result of Case 1 is shown in the
first row of Fig. 6, where the dotted line in grey with fixed
length indicates the future path of each vehicle, which is used
to define the driving conflicts, i.e., Cross, Confluence, and
Following conflicts. Solid lines in different colors in front of
all vehicles except ego can be regarded as the ground truth
of the driver type of each vehicle, which is used to calculate
stage rewards at each time step. The length of which will not
be changed until the next round of tests. The length of the line
segment represents the aggressiveness of a driver. The more
conservative the driving behavior, the longer the line segment.
The maximum length is equal to that of the gray dotted line.
For ego car, there are multiple line segments in front of it.
And the number of lines depends on the number of IVs. The
bounding box of each vehicle in different colors represents

1More testing scenarios, algorithm parameters, and experimental
settings can be found at https://youtu.be/q6vKrjqHD54
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(a) t = 0 s (b) t = 2 s (c) t = 4 s (d) t = 6 s (e) t = 12 s

(f) t = 0 s (g) t = 1 s (h) t = 3 s (i) t = 4 s (j) t = 7 s
Fig. 6: Adaptive Decision-Making Results of Ego Vehicle in Unprotected Left Turn Scenarios (a-e) Aggress: car 1, car 2;
Consrv.: car 3; (f -j) Aggress: car 1; Consrv.: car 2, car 3

(a) 2 Aggr. & 1 Consrv. Drivers (b) 1 Aggr. & 2 Consrv. Drivers

Fig. 7: Driver Models Identification History of Ego Vehicle

(a) 2 Aggr. & 1 Consrv. Drivers (b) 1 Aggr. & 2 Consrv. Drivers

Fig. 8: Travel Efficiency of Four Vehicles

(a) 2 Aggr. & 1 Consrv. drivers (b) 1 Aggr. & 2 Consrv. drivers

Fig. 9: Computational Time

the uncertainty zone from the perspective of ego. Both the
length of each line segment in front of the ego car and the
size of the bounding box of each IV have a linear dependence
relation with the probability that a specific car can be modeled
as level-0 driver. Intuitively, the higher the confidence that a
certain vehicle can be modeled as an aggressive driver, the

larger the reserved safety interaction space would be. In the
beginning, the length of all line segments of ego and the size of
the bounding boxes of IVs are the maximum. This is because
ego initially assumes that the driving types of surrounding
vehicles are all level-0. Ego would behave cautiously due to
the lack of interactive data. From 0 s to 4 s, car 1 and car 2
start to accelerate and choose to pass through the intersection
first while car 3 and ego choose to yield the right of the way to
them. At t = 6 s, ego car is interacting with car 3. The length
of the green line of ego indicating the probability that car 3
can be modeled as level-0 starts reducing. This is because car
3 chooses to continue to yield the right of way to the ego,
therefore, car 3 finally is regarded as a level-1 driver after
interactions instead of level-0. However, the length of the solid
red line and yellow line in front of ego car does not change
during the interactions, which means that the driver types of
car 1 and car 2 identified by ego are level-0. The driver model
identification history of ego car in case 1 can be also found
in Fig. 7a.

The travel efficiency of vehicles at the intersection can be
represented by Fig. 8a, in which the number of waypoints for
each path is normalized. The y-axis represents the completion
progress of vehicles on their path, and the time corresponding
to the progress of 1 can be used to indicate the order in
which each vehicle exits the intersection. In Case 1, aggressive
vehicles, car 1 and car 2, are the first to pass through the
intersection, followed by ego vehicle. And the conservative
vehicle of car 3 is the last to exit the intersection.

In Case 2, level-0 policy is assigned to car 1 while level-
1 policy is assigned to car 2 and car 3. According to the
second row of Fig. 6, all cars choose to stop and let car 1
pass the intersection before t = 3 s. Then car 2 and car 3
continue to wait until ego passed the potential collision points.
After that car 2 choose to move since it is closer to the exit
point of the intersection. Two level-1 drivers are successfully
identified by ego according to Fig. 7b. The order of exiting
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the intersection is car 1, ego, car 2, and car 3, respectively as
shown in Fig. 8b. Due to space limitations, more test scenarios
and model parameter settings could be found in the video.

The computational load mainly comes from solving the
optimal actions for the HV following receding horizon op-
timization while considering all possible driving behaviors of
the IVs, which is mainly affected by the number of IVs. The
switching interaction graphs of the ego vehicle are generated
according to its local observation and corresponding trust as
shown in Fig. 6. In such four-vehicle intersection scenarios,
the proposed algorithm effectively simplifies the interaction
relationship between the ego car and surrounding vehicles,
thereby reducing the computational cost of game-theoretic
decision-making algorithm. Compared with the traditional
level-k decision-making algorithm [17], the computational
time of our algorithm is reduced by around 50% on average as
shown in Fig. 9. The advantage of the proposed algorithm in
reducing computational complexity is more obvious in more
complex multi-vehicle scenarios, which will be discussed in
the next section using our high-fidelity platform.

B. Scalability and Computational Complexity

Developing a high-fidelity simulator for verifying the AV
system is of great significance for improving the driving safety
of AVs and saving costs of road tests. In this work, we devel-
oped a high-fidelity testing platform for the unsignalized inter-
section scenarios with multiple vehicles using ROS-Gazebo,
which supports dynamic simulation, sensor data acquisition,
and customized traffic environments helping to narrow the
gap between the simulation and the real world, see Fig.
10. The Gazebo environment is developed on Ubuntu 18.04
workstation with Intel Xeon W-1290P CPU.

Fig. 10: Simulation Environment

To validate the scalability and computational efficiency of
the proposed algorithm, more complex scenarios are consid-
ered in this section, where 6 or 7 vehicles are navigating
the intersection at the same time with different combinations
of aggressiveness as shown in Table I. Case 3 is a six-
car scenario, where the ego car adopts an adaptive policy
while the rest vehicles use the level-1 strategy except car 1
and car 4 using level-0. In Case 4, an additional car 6 is
added behind car 3 and goes straight with a level-1 driving
strategy. The other vehicles are basically the same as Case

3 except the car 3 turning right with a level-0 strategy.
According to Fig. 11, the ego car passed the intersections
successfully without any collisions with other cars. The orders
of exiting the intersections for these two cases are shown in
Fig. 12. Similar to the previous four-car scenarios, vehicles
with aggressive policy pass through the intersection before
vehicles with conservative policy. And ego car adjusted its
driving strategy adaptively based on the aggressiveness of IVs
while guaranteeing both traffic efficiency and driving safety.
According to Fig. 13, ego has successfully identified that level-
1 policy is assigned to car 2 and car 3 in Case 3 and assigned
to car 2 and car 6 in Case 4. It should be noted that although
car 5 adopts a level-1 policy in both scenarios, ego car does
not update its trust level for car 5 as a level-0 driver. This
is because car 5 turns right in both cases, according to the
switching interaction graph provided in Fig. 11, there is no
interaction between the ego car and car 5. Therefore, the ego’s
trust level for car 5 as a level-0 driver remains at its initial
value.

The reduction in computational complexity in this work is
mainly attributed to the introduction of a switching interaction
topology mechanism. In the following, we will use the seven-
vehicle scenario to demonstrate how this algorithm can effec-
tively reduce computation time. At t=0 s, ego’s future path has
no intersections with that of surrounding vehicles, resulting in
no interaction behavior and allowing the algorithm to run at
its fastest state, close to 0.03 s. However, at t=7 s, ego vehicle
models car 1 and car 2 as interactive vehicles because their fu-
ture paths intersected. Additionally, car 6 was also considered
an interactive vehicle because the driving behavior of car 1 is
going to be influenced by the car 6, indirectly affecting ego’s
decision-making. The interaction topology between ego and
the surrounding vehicles can be seen in the upper right corner
of each figure, see Fig. 11 (g). Therefore, the computation
time rapidly increases in Fig. 14 (b), peaking at around 0.17
seconds. As the vehicles proceed, the interaction topology
changes, and by t=17 s, only car 2 is affecting ego’s actions,
leading to a decrease in computation time. After t=27 s, ego
successfully passes through the intersection, terminating all
interaction behavior and returning to its fastest-running state.
In contrast, for the traditional algorithm, ego needs to consider
the behavior of all vehicles, resulting in a computation time
of approximately 0.4 s.

In summary, the computational time of our algorithm does
not increase with the number of vehicles compared with the
traditional algorithm, as shown in Fig. 14. The computational
load is reduced by 55% in six-car scenario and reduced by 63%
in seven-car scenario on average, where the blue dotted line
represents the computational efficiency of the traditional level-
k algorithm and the yellow line represents that of our algo-
rithm. This is because the proposed algorithm can effectively
cut off the relationship between ego and other vehicles that do
not affect its decision-making directly, thereby improving the
scalability and performance in real-time implementation. We
remark that more vehicles could be added to the simulator at
the expense of increasing the computational burden due to the
physics calculation of the Gazebo.
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(a) t = 0 s (b) t = 10 s (c) t = 16 s (d) t = 25 s (e) t = 33 s

(f) t = 0 s (g) t = 7 s (h) t = 15 s (i) t = 17 s (j) t = 27 s
Fig. 11: Adaptive Decision-making Results of Ego Vehicle in Unprotected Left Turn Scenarios (a-e) Consrv.: car 2, car 3, and
car 5; Aggr.: car 1 and car 4; (f -j) Consrv.: car 2, car 5, and car 6; Aggr.: car 1, car 3, and, car 4

(a) Six-car Scenario (b) Seven-car Scenario

Fig. 12: Travel Efficiency

(a) 2 Aggr. & 3 Consrv. Drivers (b) 3 Aggr. & 3 Consrv. Drivers

Fig. 13: Driver Models Identification History of Ego Vehicle

(a) Six-car Scenario (b) Seven-car Scenario

Fig. 14: Computational Time

VI. CONCLUSIONS AND FUTURE WORK

Based on game-theory and interaction graph, a novel scal-
able decision-making framework for AVs is proposed for
resolving driving conflicts at unsignalized intersections. The
aggressiveness of drivers and uncertainties arising due to
the simplified model are taken into account in the decision-
making framework. In the payoff function design of decision-
making, multiple driving features are considered including
driving safety, travel efficiency, and driving aggressiveness.
To reduce the inherent computational complexity of level-
k game theory, the concept of switching directed graphs is
incorporated into the adaptive decision-making framework.
Finally, the algorithm is verified on both self-driving car
hardware and a high-fidelity simulator with multiple vehicles.
According to the testing results, it can be conducted that
the proposed algorithm makes robust adaptive decisions for
AVs, meanwhile, the performance of the algorithm in terms
of interpretability, computational efficiency, and scalability
can be guaranteed. Our future work will focus on the real
time implementation of the proposed method in continuous
action space. Game Theory-Model Predicted Control-Deep
Reinforcement Learning hybrid approach could further boost
the performance of proposed algorithm in computational com-
plexity and safety.
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